

"Redacted Author Names for Privacy"

Contents

Project Background

EPAnet

Assumptions

Methodology

Contents (Cont.)

- Models/Figures
- Results

Conclusion


Recommendations

Nederland, Colorado

- Current water infrastructure: Ductile iron
- Proposed material: Steel
- Population: 1,336
- Located: Boulder county, Colorado
- Analysis: Main Piping of the city

EPAnet 2.2

- Software used for analysis the water infrastructure
- EPANET is a software application used throughout the world to model water distribution systems. It was developed as a tool for understanding the movement and fate of drinking water constituents within distribution systems, and can be used for many different types of applications in distribution systems analysis.
- Based on Hardy cross and Bernoulli's modified equation.

Assumptions

- Steady state flow
- Elevations

- Number of junctions
- Number of tanks

Gravity fed pumps

Methodology

Transferred map to autocad and fitted to scale

• Then transferred to EPAnet

Estimated base demand 65 GPM

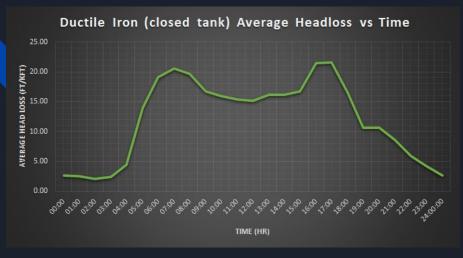
Changed infrastructure using Hazen Williams coefficient

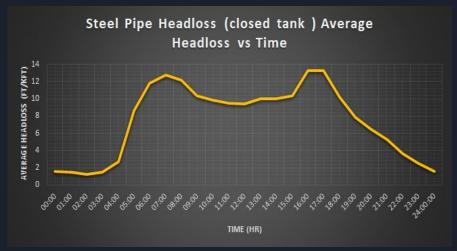
• 17 junctions, 19 Pipes, 2 tanks and added minor losses using bends, exits and entrances

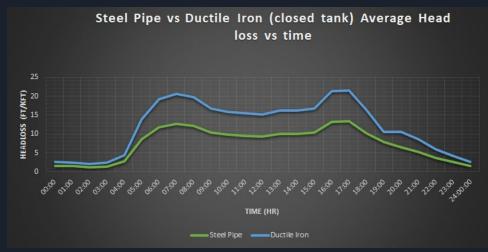
Table 3.2 Roughness Coefficients for New Pipe

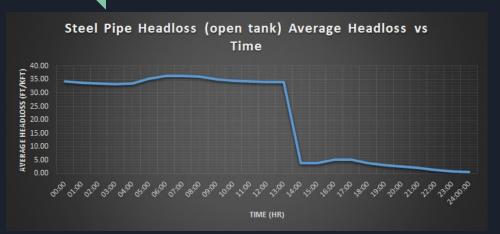
Tubic Cia Troughness Coefficients for the William									
Material	Hazen-Williams C (unitless)	Darcy-Weisbach ε (feet x 10°³)	Manning's n (unitless)						
Cast Iron	130 – 140	0.85	0.012 - 0.015						
Concrete or	120 – 140	1.0 - 10	0.012 - 0.017						
Concrete Lined									
Galvanized Iron	120	0.5	0.015 - 0.017						
Plastic	140 – 150	0.005	0.011 - 0.015						
Steel	140 – 150	0.15	0.015 - 0.017						
Vitrified Clay	110		0.013 - 0.015						

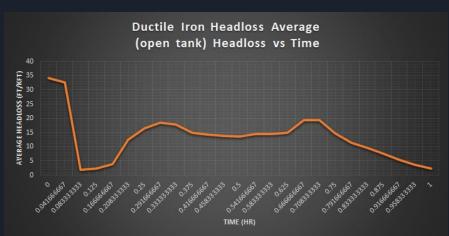
Values used for calculations of head loss

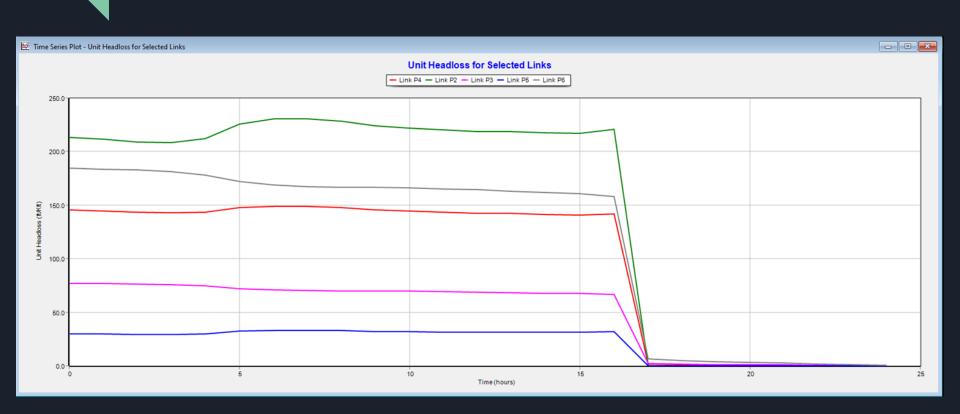

FITTING	LOSS COEFFICIENT
Globe valve, fully open	10.0
Angle valve, fully open	5.0
Swing check valve, fully open	2.5
Gate valve, fully open	0.2
Short-radius elbow	0.9
Medium-radius elbow	0.8
Long-radius elbow	0.6
45 degree elbow	0.4
Closed return bend	2.2
Standard tee - flow through run	0.6
Standard tee - flow through branch	1.8
Square entrance	0.5
Exit	1.0


Results


• Results as expected with closed tank


• Significant reduction of head loss using proposed material (steel)


Inconsistencies: Open tank



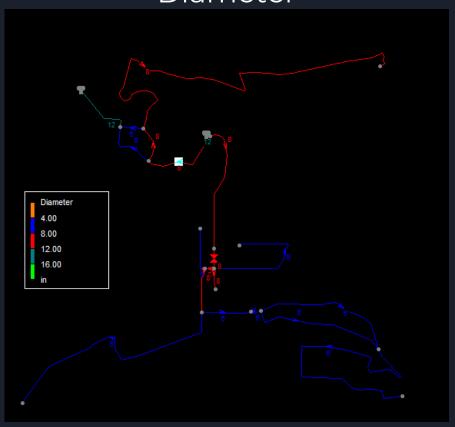
Ductile iron (Open tank 24 hour period)

Head loss (Ductile Iron)

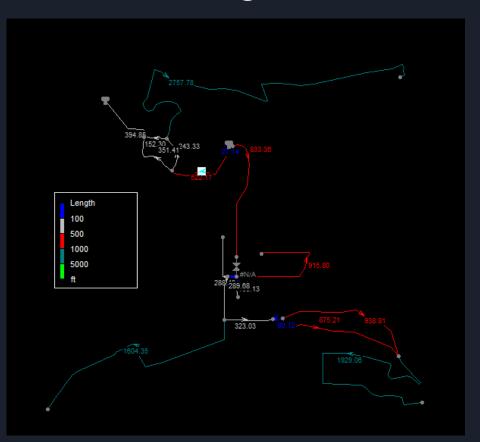
Link Results at 18:00 Hrs:					Link Result	ts at 0:00 Hrs:			
Link ID	Flow GPM	VelocityUn fps	it Headloss ft/Kft	Status	Link ID	Flow GPM	VelocityUn fps	it Headloss ft/Kft	Sta
P1	-78.00	0.50	0.28	Open	P1	-29.25	0.19	0.05	Open
P2	9.13	0.10	0.02	Open	P2	-1319.87	14.98	213.02	Open
P3	-165.13	1.05	1.60	Open	P3	1261.37	8.05	77.08	Open
P4	-68.86	0.78	1.11	Open	P4	904.40	10.26	145.70	Open
P5	0.00	0.00	0.00	Closed	P5	2253.52	6.39	29.96	Open
P6	-312.00	1.99	4.79	Open	P6	2136.52	13.64	184.73	Open
P7	936.00	5.97	35.38	Open	P7	351.00	2.24	5.55	Open
P8	78.00	0.89	1.19	Open	P8	29.25	0.33	0.19	Open
P9	78.00	0.50	0.34	Open	P9	29.25	0.19	0.05	Open
P10	624.00	3.98	14.48	Open	P10	234.00	1.49	2.31	Open
P11	78.00	0.89	1.18	Open	P11	29.25	0.33	0.19	Open
P12	468.00	2.99	10.67	Open	P12	175.50	1.12	1.66	Open
P13	312.00	3.54	16.90	Open	P13	117.00	1.33	2.68	Open
P14	78.00	0.89	1.22	Open	P14	29.25	0.33	0.20	Open
P15	79.76	0.91	1.28	Open	P15	29.90	0.34	0.20	Open
P16	-76.24	0.87	1.20	Open	P16	-28.60	0.32	0.19	Open
P17	78.00	0.89	1.34	Open	P17	29.25	0.33	0.21	Open
P18	234.00	2.66	14.88	Open	P18	87.75	1.00	2.27	Open
P19	1326.00	3.76	11.00	Open	P19	-1756.27	4.98	18.79	Open

Ductile iron (open tank 18:00 hours)

Steel pipe (head loss 24 hour period)


Head loss comparison (Steel pipe)

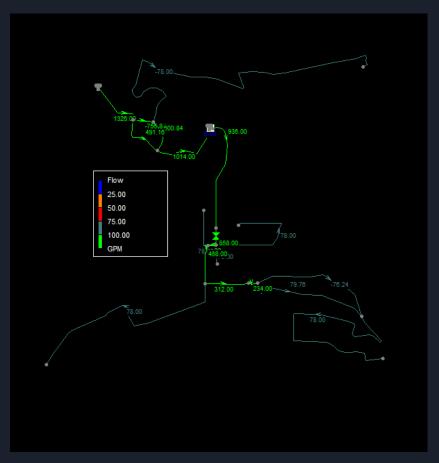
Link Results at 0:00 Hrs:					Link Resu	Link Results at 18:00 Hrs:				
Link ID	Flow GPM	VelocityUr fps	nit Headloss ft/Kft	Status	Link ID	Flow GPM	VelocityUn fps	it Headloss ft/Kft	Status	
P1	-29.25	0.19	0.02	Open	P1	-78.00	0.50	0.15	Open	
P2	-1666.87	18.91	174.32	Open	P2	7.26	0.08	0.01	Open	
P3	1608.37	10.27	87.08	Open	P3	-163.26	1.04	1.05	Open	
P4	1083.95	12.30	135.85	Open	P4	-70.74	0.80	0.73	Open	
P5	2780.08	7.89	31.12	Open	P5	0.00	0.00	0.00	Closed	
P6	2663.08	17.00	190.34	Open	P6	-312.00	1.99	3.08	Open	
P7	351.00	2.24	3.43	Open	P7	936.00	5.97	22.31	Open	
P8	29.25	0.33	0.10	Open	P8	78.00	0.89	0.66	Open	
P9	29.25	0.19	0.03	Open	P9	78.00	0.50	0.21	Open	
P10	234.00	1.49	1.31	Open	P10	624.00	3.98	8.31	Open	
P11	29.25	0.33	0.10	Open	P11	78.00	0.89	0.65	Open	
P12	175.50	1.12	1.07	Open	P12	468.00	2.99	7.05	Open	
P13	117.00	1.33	1.55	Open	P13	312.00	3.54	9.96	Open	
P14	29.25	0.33	0.11	Open	P14	78.00	0.89	0.69	Open	
P15	29.97	0.34	0.12	Open	P15	79.97	0.91	0.73	Open	
P16	-28.53	0.32	0.11	Open	P16	-76.03	0.86	0.68	Open	
P17	29.25	0.33	0.12	Open	P17	78.00	0.89	0.80	Open	
P18	87.75	1.00	1.61	Open	P18	234.00	2.66	10.81	Open	
P19	-2282.83	6.48	21.55	Open	P19	1326.00	3.76	7.54	Open	


Steel pipe (Open tank 18:00 hours)

Models/figures Diameter

Length

Flow (Steel pipe open tank 18:00 hours)


Flow (Steel pipe closed tank 18:00 hours)

Flow (Ductile iron Open tank 18:00 hours)

Flow (Ductile iron closed tank 18:00 hours)

Conclusions

• The result of the proposed material came out to be as expected

Head loss was significantly lower for steel piping

Recommendations

• Further analysis of closing of tank two

• Economic feasibility of changing infrastructure to proposed material (steel)

References

- 1. EPANET. (2020, August 31). US EPA. https://www.epa.gov/water-research/epanet
- 2. Water Resources Engineering. (2013). Water Resources Engineering, David Chin 3rd Edition Page.76.
- 3. Wurbs, Ralph A., and Wurbs & James. "Water Resources Engineering." Pearson, 2002, www.pearson.com/us/higher-education/program/Wurbs-Water-Resources-Engineering/PGM104797.html.
- 4. USGS. "U.S Department Interior U.S Geological Survey." Nederland Quadrangle Colorado, USGS, 2016, pubs.er.usgs.gov/publication/gq833.
- 5. Town of Nederland. "Utility Maps –." Town of Nederland, Colorado, nederlandco.org/government/town-departments/public-works/utility-maps. Accessed 7 Apr. 2021