# Morning Glory Spillway Alternative for Oroville Dam

Redacted Author Names for Privacy CXX04 S21

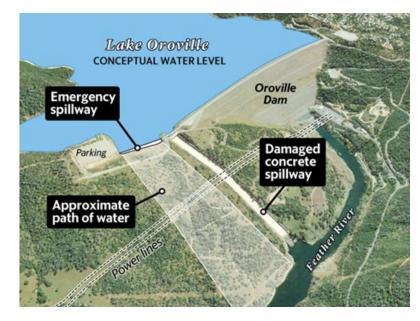


## Site Characteristics

- Tallest dam of the country, measuring at 235 m (770 ft)
- Located within the foothills of Sierra Nevada
- Provides flood control and water supply
- The Edward Hyatt Powerplant produces 645 MW of power
- Constructs a reservoir of about 4,300,000,000 cubic meters

Engineering <u>& C</u>omputing








# **Oroville Dam Hydraulic System**

- Two components of spillway system:
- Service spillway unlined concrete channel that controls outflow rates down an outlet passage, a headworks structure, and a lined concrete chute
- 2. Emergency spillway 15 meter high weir. Water runs down the hillside into the river below.

Engineering & Computing



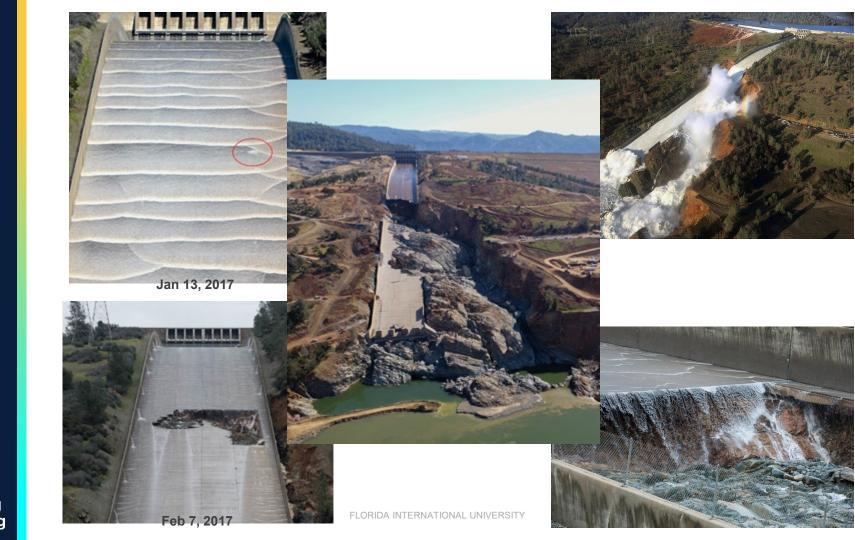
### **Project Need**



Source: Ye Tian and Sonja Jankowfsky



## Objective

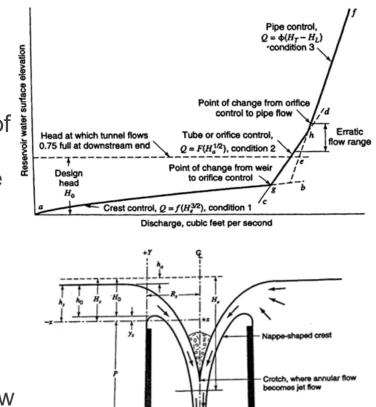

- Current status: repairments and rebuilding of the main and emergency spillways were completed in 2018.
- Only difference is the addition of a concrete buttress, underground secant pile wall and splashpad for the emergency weir.
- This project will approach the dam failure with a new spillway alternative preferably one that is uncontrolled.
- The goal of this project is to design a hydraulic system for a flow comparable to the max discharge of the existing main spillway.
- The "Morning Glory" spillway will be proposed.



# Oroville Dam 2017 Spillway Incident

- Early 2005 → environmental groups voiced their concerns about the emergency weir needing concrete protection to avoid heavy erosion
- 2013 → cracks on the main spillway were reported and immediately repaired
- \*Complete inspections have not been conducted since Feb. 3, 2015\*
- Jan 2017  $\rightarrow$  heavy rainfall over Feather Basin
- Jan 13, 2017 → photographer noticed an unusual wave pattern within the main spillway. Elevations rose due to small rainstorms
- Feb 3, 2017  $\rightarrow$  return of flood control limit, in time for large storms
- Feb 7, 2017 → water discoloration was discovered of main spillway. Outflows ceased, and a large concrete slab was removed
- Feb 11, 2017 → heavy rains continued and the emergency weir was used for the first time
- Feb 12, 2017  $\rightarrow$  evacuation order was issued

Engineering & Computing




Engineering & Computing

# Theory

Engineering & Computing


- Spillway acts as an additional form of flow release to the riverbed when surface elevations of the reservoir are exceeded
- Morning glory spillway a drop inlet spillway that allows water to enter through a horizontal lip, into a vertical shaft, and discharged through a horizontal tunnel
- Three types of flow control: crest control, orifice control, and fullpipe flow control
- Flow of water over inlet creates a nappe-shapped profile

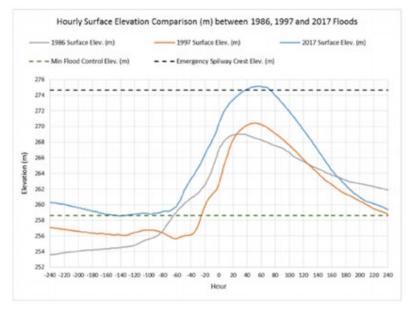


## Monticello Dam's "The Glory Hole"

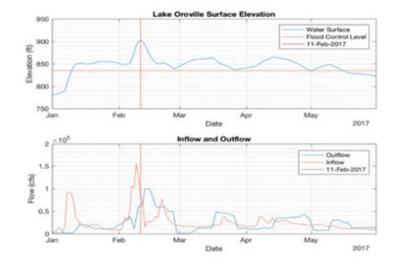
- Key feature of Monticello Dam, located 100 miles away from Oroville
- Residents call it "The Glory Hole"
- Dam is built between a canyon; limited space for overflow spillway
- Discharges up to 48,800 cfs, 72 ft diameter which narrows to 28 ft

Engineering & Computing




California

glory control structure)


# Methodology

- 1. Gathered data following the Oroville Dam crisis and performed analysis on the experienced flood events
- 2. Find information on the maximum discharge rates for Oroville's existing main and emergency spillways
- 3. Using the discharge values, calculations were conducted to compute the design parameters of the proposed morning glory spillway
- 4. A schematic diagram was created.
- 5. Discussion of flow control, pressure changes, and other mechanisms of the water flow was executed.

#### **Oroville Dam Data**



(Koskinas et. al., 2019)



(Hollins et.al, 2018)



| Mechanism                 | Function                                                                                      | Max Flowrate                                                        |
|---------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Main Spillway             | Primary removal of water when<br>high flowrate is needed                                      | 4,246 m <sup>3</sup> /s (150,000<br>cfs) under normal<br>conditions |
| Emergency Spillway        | Earthen weir. Last resort removal<br>of water when reservoir elevations<br>exceed weir height | 11,327 to 16,990 m <sup>3</sup> /s<br>(400,000 to 600,000<br>cfs)   |
| Hyatt Powerhouse          | Powerplant removes water in<br>controlled flow. Operates 5-6<br>turbines                      | 396 m <sup>3</sup> /s (14,000 cfs)                                  |
| River Valve Outlet System | Used when water is at low water<br>levels                                                     | 68 m <sup>3</sup> /s (2,400 cfs)                                    |

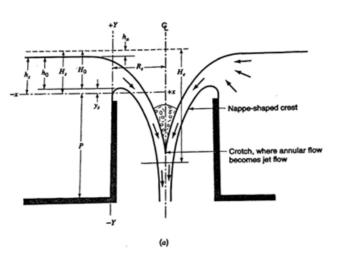


## **Design Parameters**

| Design Parameters of Morning Glory Spillway | Value     |
|---------------------------------------------|-----------|
| Maximum flowrate                            | 4240 m3/s |
| Maximum surcharge head                      | 4.89 m    |
| Crest diameter                              | 34 m      |
| Drop shaft diameter                         | 20 m      |
| Tunnel diameter                             | 11 m      |

Morning Gilory Calculations 72  
Morning Gilory Calculations 72  

$$(YetH Radius)$$
  
Known: Q = 422b mbls  
H = 4.81 m (following har of Hanticello Dam)  
Find: Q = C(2T1R) H<sup>N2</sup>  
4240 = C(2T1R) H<sup>N2</sup>  
CEs = 62.41  
MASSIME P/Rs  $\ge 2$ , use Figure 17.3.16 found in Appendix B  
O Try Rs = 15 m: H = 4.81 m = 0.326  $\Rightarrow$  Co = 3.66  
Q = 3.06 (2T1 rs)(4.89)<sup>N2</sup> = 3730.1 m<sup>3</sup>1s  $\le$  4240 m<sup>NS</sup> X  
O Try Rs = 20 m: H = 4.89 m = 0.2445  $\Rightarrow$  Co = 3.82  
Q = 3.82 (2T1 rs)(4.89)<sup>N2</sup> = 5140.83 m<sup>NS</sup> > 4240 m<sup>NS</sup> X  
O Try Rs = 17 m: H = 4.89 m = 0.268  $\Rightarrow$  Co = 3.72  
Q = 3.82 (2T1 rs)(4.89)<sup>N2</sup> = 5140.83 m<sup>NS</sup> > 4240 m<sup>NS</sup> X  
O Try Rs = 17 m: H = 4.89 m = 0.268  $\Rightarrow$  Co = 3.72  
Q = 3.72(2T1 rs)(4.89)<sup>N2</sup> = 4296.7 m<sup>NS</sup> x 4240 m<sup>NS</sup> X  
A creater radius of 17 meters will be used = 34 m diameter

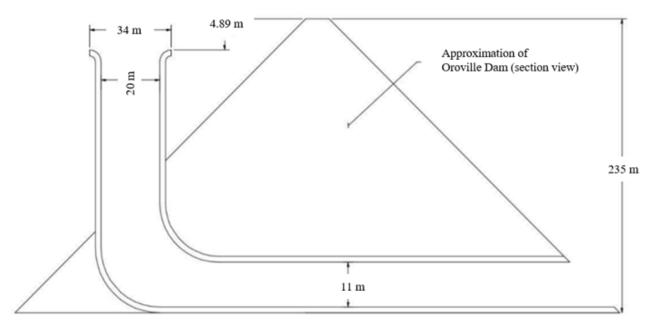

$$Q = CLH_e^{3/2} \tag{1}$$

$$Q = C_0 (2\pi R_s) H_0^{3/2}$$
(2)

 $Q = C_0 \Big( 2\pi R^2 \sqrt{2gH_a} \Big) \tag{3}$ 

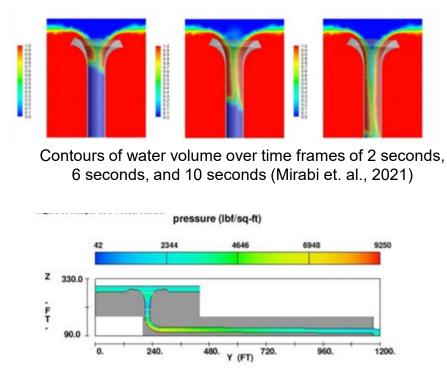


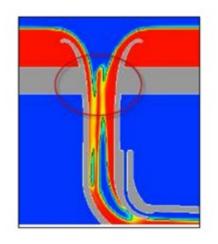
| X/H <sub>s</sub> | Y/H <sub>s</sub> | X= (X/H <sub>s</sub> )*H <sub>S</sub> | $Y = (Y/H_s)^*H_S$ |
|------------------|------------------|---------------------------------------|--------------------|
| 0.000            | 0.000            | 0.000                                 | 0.000              |
| 0.010            | 0.032            | 0.053                                 | 0.170              |
| 0.020            | 0.064            | 0.106                                 | 0.340              |
| 0.030            | 0.096            | 0.159                                 | 0.511              |
| 0.040            | 0.128            | 0.212                                 | 0.681              |
| 0.050            | 0.160            | 0.266                                 | 0.851              |
| 0.060            | 0.192            | 0.319                                 | 1.021              |
| 0.070            | 0.224            | 0.372                                 | 1.191              |
| 0.080            | 0.256            | 0.425                                 | 1.362              |
| 0.090            | 0.288            | 0.478                                 | 1.532              |
| 0.100            | 0.321            | 0.531                                 | 1.702              |
| 0.110            | 0.353            | 0.584                                 | 1.872              |
| 0.120            | 0.385            | 0.637                                 | 2.042              |
| 0.130            | 0.417            | 0.690                                 | 2.213              |
| 0.140            | 0.449            | 0.743                                 | 2.383              |
| 0.150            | 0.481            | 0.797                                 | 2.553              |
| 0.160            | 0.513            | 0.850                                 | 2.723              |
| 0.170            | 0.545            | 0.903                                 | 2.893              |
| 0.180            | 0.577            | 0.956                                 | 3.063              |
| 0.190            | 0.609            | 1.009                                 | 3.234              |
| 0.200            | 0.641            | 1.062                                 | 3.404              |




1 Thape of Creat  $k_{nown}: \frac{p}{R_s} = 2$ ,  $\frac{H_0}{R_s} = 0.288$ Using Figure 17.3.156, Hr = 1.0856 => Hr = 5.31 m From Figure 17.3.15 a, Ys = Hs-Ho = \$5.31 - 4.89 = 0.42 m  $\frac{H_s}{R_s} = \frac{5.31}{17} = \frac{0.312}{5}$ X-Y coordinate of Crevt profile is computed in Table 3




Sample of X-Y coordinates of the crest FLORIDA INTERNATIONAL UNIVERSITY profile above the weir crest


## Schematic Diagram of Morning Glory





#### Discussion





Interference of water and the crotch point (Razavi & Ahmadi, 2017)



Transition from weir flow to full pipe flow (Gomez et. al., 2017) <sub>FLORIDA INTERNATIONAL UNIVERSITY</sub>

## Conclusion

Engineering

& Computing

- Oroville Dam experienced an almost catastrophic event in February 2017, resulting in an evacuation of over 180,000 residents.
- Warnings about this failure could've been detected if proper inspections were conducted in the years before the incident.
- The goal of this project was to propose an alternative spillway system from the existing and previously failed Oroville spillway system.
- The morning glory spillway was chosen because of its ability to discharge large volumes of water and its uncontrolled release ability.
- Ensuring that the system is safe, the construction of the spillway must be built on adequate rock foundation.
- Annual inspections must be performed when the morning glory spillway is not in use, usually in summer and fall seasons, to ensure good design operation and maintenance.

#### References

Engineering

& Computing

- Gomez, D.M., Gessler, D., & Donaghy, J. (2017). Evaluating the Spillway Capacity of the Morning Glory Spillway at Harriman Dam.
- Koskinas, A., Tegos, A., Tsira, P., Dimitriadis, P., Iliopoulou, T., Papanicolaou, P., . . . Williamson, T. (2019). Insights into the Oroville Dam 2017 Spillway Incident. *Geosciences*, *9*(1), 37. doi:10.3390/geosciences9010037
- LaBoon, J., McGovern, R., Percell, P., Heppler, T., LaFond, R., & Luebke, T. (2014). Design Standards No. 14. Appurtenant Structures for Dams (Spillways and Outlet Works) Design Standard. U.S. Department of the Interior Bureau of Reclamation.
- Mirabi, M. H., Akbari, H., & Alembagheri, M. (2021). Detailed vibrational analysis of unbalanced morning glory spillways using coupled finite volume-finite element method. *SN Applied Sciences, 3*(1). doi:10.1007/s42452-020-04006-0
- Razavi, A.R. & Ahmadi, H. (2017 November). Three-Dimensional Simulation of Flow Field in Morning Glory Spillway to Determine Flow Regimes (Case Study: Haraz Dam)
- United States Department of the Interior Bureau of Reclamation. (1965, September 30). Hydraulic Model Studies of the Flood Control Outlet and Spillway for Oroville Dam. *California Department of Water Resources*. Report No. Hyd- 510.
- US Army Corps of Engineers (1970). Oroville Dam and Reservoir, Report on Reservoir Regulation for Flood Control; US Army Corps of Engineers: Sacramento, CA, US.