Lake Okeechobee Assessment & Hydropower Implementation

Redacted Author Name for Privacy

CXX04 F21

OUTLINE

- Introduction
- Project Objective
- Project Description
- Methodology
- Results
- Conclusion
- Recommendation
- References

BACKGROUND

Lake Okeechobee

- Located in central and southern Florida and considered the second largest freshwater lake within the USA
- Water Supply and flood prevention control system
- Surface Area of 730 square miles
- Depth of 12 feet
- Great magnitude of species
- Helps farmers and communities around the lake
- Recreational Purposes, such as boating and fishing

BACKGROUND

- Hydroelectric Power
- Great Source of energy
- Reliable
- Versatile
- Low Cost

OBJECTIVES

- Create a complete assessment of Lake Okeechobee that includes:
- Inflows
- Outflows
- Hydraulic Systems

- Calculating the potential energy the lake can generate using any flow.

DESCRIPTION

- Mostly managed by the South Florida Water Management District and the United States Army Corps of Engineers.
- Lake supplies water for salinity control, groundwater control, agricultural irrigation, among others.

- 44% West, Ft. Myers, Caloosahatchee River
- 15% East, St Lucie River
- 41% South, Miami Canal

Approximately,

- 31 culverts
- 9 locks
- 5 dams
- 7 spillways
- 3 weirs

Class I Drinking Water

METHODOLOGY

• Data obtained from the United States Army Corps of Engineers

Equation for Power Output of a Dam:

 $P = \eta^* \rho^* g^* h^* Q$

- η , efficiency of the turbine
- ρ , density of water
- g, gravity
- h, head loss
- Q, flow

Equation for Energy (kwh)

$$\mathsf{E}_{(kwh)} = \mathsf{P}_{(kw)} * \mathsf{t}_{(h)}$$

- P, power output
- t, time period

- Average Households Energy Consumptions is 28.9kw
 - The kilowatts in US cost around \$0.1142

Avg Households =
$$\frac{E}{28.9}$$
 = Amount of Houses

Earnings = E * 0.1142 = Amount of earnings per hour

RESULTS

Inflows:

- Kissimmee River
- Fisheating Creek
- L-62 Canal
- Taylor Creek
- Slough Ditch
- Harney Pond Canal
- Indian Prairie Canal
- 8 Pump Stations
- C5 Culvert

Outflows:

- Miami Canal
- North New River Canal
- West Palm Beach
- L8 Canal Point
- Moore Haven
- Port Mayaca
- 4 Culverts

RESULTS

For calculations of Potential Energy, the following were used:

Inflows

- Kissimmee River
- Chancy Bay Creek
- Fisheating Creek

Outflows

- Moore Haven
- Port Mayaca
- North New River Canals
- Canal Point
- Miami Canal
- L-8 @ CP

Name	Flow	AVG Q (cfs)
Kissimmee River	Inflow	716
Chancy Bay Creek	Inflow	170
Fisheating Creek	Inflow	8
Moore Haven	Outflow	1248
Port Mayaca	Outflow	224
North New River	Outflow	662
Canal Point	Outflow	542
Miami Canal	Outflow	195
L - 8	Outflow	301

ENERGY

- Assumptions of 4 ft head was made due to the fact of the water level.
- Time period of 24 hours

Name	Power (kw)	Energy(kwh)	Households
Kissimmee	51.43	1234	43
Chancy Bay	12.21	293	10
Fisheating	0.57	13.8	0
Moore Haven	358.5	8605	298
Port Mayaca	64.27	1542	53
North New	190	4565	158
Canal Point	156	3738	129
Miami Canal	56.1	1346	47
L - 8	86.5	2076	72

Earnings

Using an estimate by the EIA, the kwh costs \$0.1142

Name	Hourly	Daily	Monthly
Kissimmee	\$141	\$3,383	\$101,485
Chancy Bay	\$33.47	\$803	\$24,096
Fisheating	\$1.57	\$37.80	\$1,134
Moore Haven	\$983	\$23,585	\$707,559
Port Mayaca	\$176	\$4,228	\$126,831
North New	\$521	\$12,512	\$375,357
Canal Point	\$427	\$10,247	\$307,423
Miami Canal	\$154	\$3,691	\$110,722
L - 8	\$237	\$5,692	\$170,753

CONCLUSION

- This assessment shows the importance of Lake Okeechobee and how it impacts South Florida
- The results for potential energy demonstrate how effective and beneficial is an installation of these systems on the lake.
- It has to be considered, these calculations were made with known flow data but other hydraulic structures could be used.

RECOMMENDATION

- It is recommended the installment of a hydropower system.
- A zero-head system should be considered

- South Florida Water Management District. Lake Okeechobee. https://www.sfwmd.gov/our-work/lakeokeechobee#:~:text=Lake%20Okeechobee%20pr ovides%20natural%20habitat,to%20sport%20and%20commercial%20fisheries.
- US Army Corps of Engineers. Vicinity Reports. <u>https://w3.saj.usace.army.mil/h2o/reports/r-oke.html</u>
- US Army Corps of Engineers. Navigation Locks. https://www.saj.usace.army.mil/Missions/Civil-Works/Navigation/Navigation-Locks

THANK YOU!

ANY QUESTIONS?

