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Energy Principles in Open Channels
(Three Forms of Energy per Unit Weight)

Like pipe flow, the energy forms are:
Potential, Pressure, and Kinetic

and expressed as energy head: =
Position + Pressure + Velocity = H

Since V varies
across channel =2
Avg "V" Head = o(V2/2g
where o = energy coef. (1.05 to 1.20)

Also, p/y can vary if bottom slope is
not constant due to centrifugal force.




Hydraulic Efficiency
in Open Channels

Recall Manning's Eq'n: Q = AV = (k,/n)AR,?/3S 1/2
Based on this equation, how would we maximize Q for a

given slope and “n" value? Ans:

Alternatively:

Which of the shapes below is most efficient?

Is that shape pracTicaI? Why? Note the best alternatives.
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Figure 6.5 Hydraulically efficient sections
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Figure 6.6 Best hydraulic trapezoidal section
{see demonstration of the BH Trapezoidal section or half-
hexagon)
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Specific Energy in Open Channels

(Interrelationships Between Energy Forms)

Total Energy Head in Open Channels:
H=2z+y+ V2/2g = arbitrary datum
However, specific energy head is:
E=y+ V329 =y + Q%3/(2gA%?) =>
when the channel bottom is the datum.

If E, = E; below (minimal losses), how do
Conctant 1 The specific energy
x-section | components change

.1 | from Section 2 to 1?

Constant Q,
Slope Change -




Specific Energy Curves
(Flow Regimes & Alternate Depths)

Specific Energy, E

E = y + Q¥/(29A?)

For a constant Q, plotting
“E" vs. a varying "y" (depth)
of a given X-section yields:
€ Specific Energy Curve
Observe that 2 different

flow conditions occur at
most energy levels, E; = E,

E; 2 low depth, high V

| E, ° high depth, low V

Alternate depths: y, & vy,




Minimum Energy and Critical Depth

(Subcritical and Supercritical Flow)

Subcritical Flow

Supercritical Flow

Specific Energy, E

At one location, the energy
is a minimum (E, = critical
flow) and the depth is
called critical depth (y,).

It separates flow regimes:
Supercritical Flow:

E; = low depth, high V
Subcritical Flow:

| E; = high depth, low V

Steep channel slopes will
produce supercritical flow.




Critical Depth & the Froude Number
(Minimizing Specific Energy in a Channel)

To find y,, set the 15t derivative of E equal to O: dE/dy = O
dE/dy = d/dy [y + Q?/2gA2?] = 1 - [2Q?/2gA3](dA/dy) = O
Note from the figure that dA/dy = T. Substituting yields,
1=Q?%T/gA3 = Also, A/T = D (hydraulic depth). Thus,

= Q?/(gDA?) = V2/gD or 1 = V/(gD)!/2 = Nr = Froude Number

Rectangular channels:
RGO A LR N ¢ —

and b = channel width. -~
Use: Q3?/g = A3/T = DA2 e y /
to finag or all @ anne




Froude Number and Critical Depth

(Rectangular and Non-rectangular Channels)

Nr = Ratio of inertial to gravity force.

Alternatively, the ratio of flow velocity to
the velocity of a disturbance wave.

€ Disturbance wave (throw stone in pond)

N: = V/(gD)¥2 = 1 (critical flow). Thus
the channel velocity equals the wave speed.

Ne < 1 (subcritical flow) @ The channel velocity (V) is less
than the wave speed (gD)? (i.e., throw a stone into channel
and the disturbance wave will propagate upstream).

Ne > 1 (supercritical flow) Disturbance wave washes away.




Critical Depth & Froude Number

(Example Problem - Rectangular Channel)

Rectangular

Given: Concrete channel with S, = 0.01 =
Find normal & critical depths & N.

-~ T

From Table 6.2: n = 0.013, & Table 6.1: I Q =100 cms
A= P = Find dy: |—t—r

Q - (1/n)ARh2/3501/2 - (1/n)(A5/3/p2/3)501/2
Hence, Qn/S,2 = (100*0.013)/(0.01)/2 = (By, )*/3/[5+2y, ]2
Solving iteratively (or w/charts or software), y, = 2.31m

V=Q/A-= D=A/T:= N = V/(gD)¥2 =

Flow is supercritical since N > 1. q=Q/b =

Y. = (q2/g)'/3 = (202/9.81)"/3 = - Note: y, <y,




Critical Depth & Froude Number
(Example Problem = Trapezoidal Channel)

Given: Channel w/Q = 1510 cfs
S,=0.00088, m=15,b=25ft

Solution: From Table 6.1:

A = T =

Thus,

ITrapezoidal

V" a 2 "'V

+ —a
1 y 1
}\ + n=0.017 1

b -

A=y(25+1by) T =25+ 3y. At critical depth: Q?/g = A3/T
Q?/q = (1510)?/32.2 = 70,800 = [y.(25 + 1.5y )13/[25 + 3y.]

Solving iteratively (or w/charts or software), y. = 4.41 ft
Recall from previous class for this channel: y, = 6.25 ft

Since y, >y. = Flow is




. . Homework Problems:
Alternative Solution

(Trapezoidal Channel, Fig. 6.9a )

. Qm3¥2 =, _(1510)(1.6)%2 .=0.16
gl/2p5/2 (32.2)1/2(25)5/2

From the figure, my./b = 0.27
Y. = (0.27)(25)/15 = 4.5 ft

1
(QmBQ V(g 172,512,




Figure 6.9b Critical depth solution for circular

sections
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TABLE 6.6 Stable Side Slopes for Channels

TABLE 6.6 Stable Side Slopes for Channels

Material Side Slope® (Horizontal: Vertical)
Rock Nearly Vertical

Muck and peat soils 1//4:1

Stiff clay or earth with concrete lining l hiltol:1

Earth with stone lining or earth for large channels 1:1

Firm clay or earth for small ditches 1! il

Loose, sandy earth 2:1to4:1

Sandy loam or porous clay 31

If channel slopes are to be mowed, a maximum side slope of 3:1 is recommended.
Source: Based on V. T. Chow, Open Channel Hydraulics (New York: McGraw-Hill, 1959).
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TABLE 6.7 Suggested Maximum Permissible
Channel Velocities

TABLE 6.7 Suggested Maximum Permissible Channel Velocities

Channel Material Vinax (ft/s) Vinax (m/s)
Sand and Gravel

Fine sand 2.0 0.6
Coarse sand 4.0 L2
Fine gravel® 6.0 1.8
Earth

Sandy silt 2.0 0.6
Silt clay 355 1.0
Clay 6.0 1.8

AApplies to particles with median diameter (Dsg) less than 0.75 in (20 mm).
Source: U.S. Army Corps of Engineers. “Hydraulic Design of Flood Control Channels,”
Engineer Manual, EM 1110-2-1601. Washington, DC: Department of the Army, 1991.
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Figure 6.15 Recommended freeboard and height of banks
in lined channels.

Source: U.S. Bureau of Reclamation, Linings for Irrigation
Canals, 1976.
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Supercritical Flow on a Spillway
Fresno Dam, Montana (USA)

Rf.2>http://www.usbr.gov/projects/Facility.jsp?fac_Name=Fresno+Dam
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