
Lecture 5: 
Feedforward Systems of Reactors

 To develop steady state and time variable
solutions for several reactors

 To apply these solutions to a series of lakes



Reactors Connected in Series

 Feedforward reactor (w/o feedback)
 Feedback reactors



Lakes in Series

 Mass balances are:

V1 (dc1/dt)    =   W1 – Q12c1 – k1V1c1
V2 (dc2/dt)    =   W2 + Q12c1–Q23c2  – k2V2c2



Example 3.1: Lakes in Series

 


[image: image1.png]EXAMPLE 5.1. LAKES IN SERIES. Suppose that three lakes connected in series
have the following characteristics:

1 2 3
Volume, 106 m3 2 4 3
Mean depth, m 3 7 3
Surface area,10® m? 0.667 0.571 1.000
Loading, kg yr! 2000 4000 1000
Flow, 106 m3 yr! 1.0 1.0 1.0 1.0

If the pollutant settles at a rate of 10 m yr™!,
(a) Calculate the steady-state concentration in each of the reactors.

(b) Determine how much of the concentration in the third reactor is due to the loading
to the second reactor.

Solution: (a) The concentration for the reactors can be determined by

_ W _ 2% 109 B , |
W, Qiacy
Cy = +
2 On VA Qn A
= 4 % 10° 1.0 X 105(260.76)

1.0 X 106 + (10 X 0.571 X 10%) * 1.0 X 106 + (10 X 0.571 x 106)

= 596.13 + 38.86 = 634.99 g L~

W c
3 + O

cy =
Oy +vAs Qi +vA;3

1x10° 1.0 X 108(634.99)
1 X108 + (10X 1 X 10 1 x 108+ (10 X 1 X 109)

= 148.64 ugL™!

(b) The determination of how much of the third reactor’s concentration is due to the

loading to the second reactor can be established by inspecting the solution for ¢, above.
As can be seen, 596.13 ug L™! of ¢, is due to direct loadings (that is, W5), whereas

38.86 is due to the loadings to reactor 1. Therefore the effect of the second reactor on the
third reactor can be calculated as

1.0 X 10%(596.13)
1 X 10% + (10 X 1 X 109)

c3(due to loading to reactor 2) = = 54.19 ug L™!









Cascade Model

 Series of reactors which are identical in size and 
flow

cn =    (Q/Q+kV)n x c0



Example 3.2: Cascade Model in 
Elongated Tank

 


[image: image1.png]EXAMPLE 5.2. CASCADE MODEL OF AN ELONGATED TANK. Use the cas-
cade model to simulate the steady-state distribution of concentration in an elongated
tank.
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The tank has cross-sectional area A, = 10 m?, length L = 100 m, velocity U = 100
m hr™!, and first-order reaction rate k = 2 hr™'. The inflow concentration is | mg L',
Use n = 1, 2, 4, and 8 CSTRs to approximate the tank. Plot the results.

Solution: As in Eq. 5.12, the model for such a system is
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Approximation of an
0 20 40 60 80 100 elongated tank by a
X series of n CSTRs.
Therefore for the single-segment approximation,
1000 |
= = 0. L™
<30 [1000 21000y | 1 = 03333 me
where Q = UA = 100(10) = 1000. Similarly for n = 2,
_ 1000 1, _ -
C(ZS) = [m_ 1=205 mg L
1000 7
= | = 0.2 L-!
and c(75) [1000_'_2(500)_ 1 = 0.25 mg

The other cases can be computed in similar fashion. The results, as summarized in
Fig. 5.4, are interesting. As more (and smaller) reactors are used, the solution approaches
a pattern that looks just like an exponential decay. We will explore this observation in
more detail when we investigate models of elongated reactors in Lec. 9.








Time Variable



Time Variable (Cont.)



Example 5.3: Temporal Response of 
Lakes in Series

 


[image: image1.png]EXAMPLE 5.3. TEMPORAL RESPONSE OF LAKES IN SERIES. During the
late 1950s and early 1960s, nuclear weapons testing introduced large quantities of ra-
dioactive substances into the atmosphere. As Fig. E5.3-1 shows, this resulted in a fallout
flux of these substances to the surface of the earth.
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FIGURE E5.3-1

Fallout flux of *Sr to the Great Lakes (from
| 1 1. | j Lerman 1972) along with the impulse load

1955 1965 1975 used to approximate the input.

Fallout flux of 90Sr
(10-8Cim~—2yr-1)
[4,]
|

Although the fallout has continued beyond the 1960s, the pronounced peak in 1963
allows idealization of the resulting load as an impulse function,
W(t) = J;,As6(t — 1963)

where Jsr = 70 X 107° Ci m™2 (Ci denotes the radioactivity unit the curie)
A, = lake surface area (m?)
o(¢t — 1963) = unit impulse function located at 1963

Predict the response of the Great Lakes to this flux if the half-life of *°Sris approximately
28.8 yr (k = 0.0241 yr™1).

Solution: The Great Lakes can be represented as a series of reactors:
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FIGURE E5.3-2








Example 5.3: Temporal Response of 
Lakes in Series

 


[image: image1.png]Both Lakes Superior and Michigan are “headwater” lakes. Their outflows feed into Lake
Huron, which discharges to Lake Erie. Lake Ontario is the last lake in the chain. The
parameters for the system are summarized as

Parameter  Units Superior Michigan Huron Erie Ontario
Meandepth m 146 85 59 19 86
Surface area  10% m? 82,100 57,750 59,750 25212 18,960
Volume 10° m? 12,000 4,900 3,500 468 1,634
Outflow 10° m? yr! 67 36 161 182 212

The initial concentration in each lake in 1963 can be computed by

) Jsr
= — E5.3.1
=5 ( )

where H = mean depth (m). The results are

Units Superior Michigan Huron Erie Ontario

¢ 1072 Cim™ 0.479 0.824 1.186  3.684 0.814

Equations 5.18 through 5.21 can then be applied to compute the responses of each
lake, and the total solution arrived at by summing the individual components. As in
Eq. 5.18 the model for Lake Superior is

c = 0.4796_0'02968[
and for Lake Michigan is
c2 = 0.824¢700314%

Equation 5.18 is also used to predict how Lake Huron purges itself of its initial con-
centration. However, to compute the total response Eq. 5.19 is also employed to calculate
the effect of Lakes Superior and Michigan on Huron’s concentration:

_ 0.01914(0.479) , _ _
— 0.0701¢ 0.02968r __ 0.0701:
¢3 = 1.186e T 00701 = 6.02963 (e ¢ )

0.01029(0.824) (6—0.03145r _ 8—0.0701:)
0.0701 — 0.03145

The concentrations for the other lakes can be determined in a similar fashion. The
results along with data are displayed in Fig. 5.5. The simulation duplicates the general
trend of the data, with the exception that the computation decreases somewhat faster

than the data. This is due, in part, to the use of an impulse forcing function to idealize
" the continuous loading function.
This analysis results in two conclusions:

* If two lakes receive an equal impulse flux of a pollutant, their response is inversely
proportional to their depth (Eq. E5.3.1). This is the reason why shallow Lake Erie’s
initial concentration is about 4 times higher than for the other lakes.
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O, Response of the Great Lakes
Ontario to an impulse loading of %°Sr
B in 1963. Data (e) from Lerman
(1972), Alberts and Wahlgren
ol (1981), and International Joint
Commission (1979). The
B — 2 dashed line represents the
~ : response of the lake to its own
0 O~ —— L loading excluding the effect of
1960 1970 1980 upstream lakes.

* For a slowly decaying contaminant like %°Sr, the upstream Great Lakes have a sig-
nificant effect on the downstream lakes. The effect on Lake Ontario is so pronounced

that its peak concentration does not occur in 1963 but lags 2 to 3 yr due to upstream
effects.
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