Lecture 4:
Particular Solutions to Selected Forcing Functions

m To develop solutions (1.e., “particular) for specific
loading characteristics, such as:

= Impulse load

= Step load

= Linear load

= Exponential load
= Sinusoidal load

m To find analytical solutions and any associated
“shape parameters” with each unique solution
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Usefulness

m Approximations needed to support
complex situations for decision-making

m Idealizations are important to predict
unknown future loads

m Idealized loading functions allow gaining a
better understanding of how a model
works.
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Loadings Functions W(t) Versus Time
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FIGURE 4.1

Loading functions W(t) versus time t.
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A summary of the solutions developed to this point for a substance reacting
with first-order kinetics. Note that the shape parameters are shown on the
concentration response plots.
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Impulse Loading (Spill)

Pollutant discharge over a relatively very short time period (i.e.,
seconds, minutes).

Dirac delta function or impulse function, 6(t) in time! units (is 0 at
t=0 and has a unit area over time), is the forcing function:

dc/dt + Ac = W(t)/V = mo(t)/V

whose solution yields:

¢ =(m/V)e*=c eM
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Impulse Loading (spill)
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FIGURE 4.2
0 st Plot of (a) loading and (b) response for
(b) impulse loading.




Step Loading

m New continuous source

m Forcing function is a step input (W(t) =
0, t<0 & W(t) = W, t < 0); W in Mt!)

c = (W/AV)( -eM)

at steady state,

¢, = WI/AV



Step Loading (continuous source)
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FIGURE 4.3

tys t Plot of (&) loading and (b) response for step
(b) loading.




EXAMPLE 4.1. STEP LOADING. At time zero, a sewage treatment plant began to
discharge 10 MGD of wastewater with a concentration of 200 mg L~! to a small detention
basin (volume = 20 X 10* m?). If the sewage decays at a rate of 0.1 ™', compute the
concentration in the system during the first 2 wk of operation. Also determine the shape
parameters to assess the ultimate effect of the plant.

Solution: The flow must be converted to the proper units:

Imds! 86,4005\ 3o
10MGD22.8245 MGD( 3 )- 37,854 m*d
The eigenvalue can be determined as
_ 37854 _ 1
A +0.1 = 0.28927 d

Therefore the concentration can be computed with Eq. 4.10 as

200(37,854)

— W — Ay
= 3wl = 00 x 109

(1 _ 2—0.289271) - 131(1 _ e—0.28927l)
The results for the first 2 wk are

t (d) | 0 2 4 6 8 10 12 14
c(mgL™) | 0 5748 8972 10779 11792  123.61 126.79 128.58

These values can also be displayed graphically as

160 T

120 +

0 +

-

c(mglL™)
3

t(d) FIGURE E4.1

The shape parameters for this case are an ultimate steady-state concentration of
131 mg L7}, of which 95% will be attained in 3/0.28927 = 10.4 d.




Linear (“Ramp”) Loading

Waste loading increases or decreases exponentially,
as follows:

W(t) = =B, t(with units of Mt?)

where [3, = rate of change or slope of the trend (1f +3,
population growth effects can be simulated)

The analytical solution of our DE 1is:

¢ = [FB/AV)(Mt—1+ e
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b Plot of (a) loading and (b) response for
( ) a linearly increasing loading.
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Exponential Loading

Loading is W(t) = W_e *#t which yields:
c = [(WH (VAL [P - e™]

where W_ = a parameter that denotes the value at t =0 (Mt!)

€

B, = growth or decay rate of loading (t!)
At critical condition, where ¢ is a maximum, from dc/dt = 0O:

t = In(BJL)(B,-L)
c, = (WJLV)(B/N) Bet-Be)






EXAMPLE 4.2. EXPONENTIAL FORCING FUNCTION. The following series of

first-order reactions takes place in a batch reactor:
Ky ko

A B

Mass balance equations for these reactions can be written as

dCA

—— = —k
ar 1CA
dc
and —‘dtB = kica — kzca

Suppose that an experiment is conducted where cap = 20and cgg = Omg L~ Vifk, =
0.1 and k; = 0.2 d7!, compute the concentration of reactant B as a function of time.
Also, determine its shape parameters.

Solution: The concentration of reactant A can be determined by integrating the first
differential equation to give

ca = cage !
This result can be substituted into the second differential equation to yield

dCB

—— + kac = kicaoe”

ar 2CB 1€A0
Thus the mass balance is now in the form of a first-order differential equation with an

exponential forcing function. The solution is

Kyt

_ _kicao (—kyr _ iy
= k- ki) (e ¢ )
20 -
1 A
ol
Y )
E B
S
o . t , ; . i
o 10 20 30
t(d) FIGURE E4.2

or substituting the parameter values,
cp = 20(670‘” — e~0.2:>

The plot of this solution, along with the solution for ca, is shown in Fig. E4.2.
The shape parameters for this case can be computed as

0.1
~0.1(20) /0.1 \oz=0T o
= o2 (o_i) =SmglL

which will occur at

_ In(0.1/0.2)
¢ 0.1 -02
These values are consistent with the graph.

= 6.93d



Sinusoidal Loading

m A simple periodic mput 1s represented as
W(t) =W = W _sin (ot - 0)

m A solution, when 0 = 0, inflow = outtlow,
and W(t) = Qc, . sin(mt), 1s

a,in

¢ = ¢y wA(0) sin[ot- ¢(e)]
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FIGURE 4.6
Plot of (a) loading and (b) response for

(b)

the sinusoidal loading function. Note that
a constant input is also shown in this
illustration.



EXAMPLE 4.3. SINUSOIDAL FORCING FUNCTION. A completely mixed lake

receives a conservative substance. Water inflow and outflow are equal, and the inflow
concentration varies sinusoidally as

Cin = Cin + Ca.in Sin(w?t)
where T, = average inflow concentration
Cain amplitude of the inflow concentration
w angular frequency (= 2/7T ), in which 7T, = period of the oscillation
If the lake has a volume of 2.5 X 10° m> and inflow = outflow = 9 X 10° m?® yr™!,

determine its sensitivity to the sinusoidal component of the loading if the period of the
oscillation is (a) 10 yr, (&) 1 yr, or (¢) O.1 yr.

Solution: The eigenvalue can be computed as

QO 9x10% _ 1
A= T 35x108 6T

For a period of 10 yr, @ = 27/10 = 0.628 yr~! and

tan~! (0—';%—8> = 0.1727 radian (—IQL) = 0.275 yr (100 d)

27r radians

I

P(0.628)

and A0.628) = 36 - 0.985

V3.62 + 0.6282

Theretore the solution is almost identical to the forcing function. The amplitude is di-
minished only 1.5% and the phase shift is a mere 100 d (compared to the period of 10

yr). However, as shown by the following table, this correspondence breaks down as the
frequency of the forcing function increases:

Period v P(w)
(yr) (cycles yr—1) A(w) ) [P/ T,] < 100%
10 0.1 0.985 100 2.8%
1 1 0.573 61 16.7%
0.1 10 0.057 8.8 24.1%

As the frequency increases, the solution exhibits two effects. First, the amplitude di-
minishes and approaches zero. Second, as indicated by the normalized phase shift, the
solution increasingly lags the forcing function. In essence both effects reflect the fact

that the systéem is too sluggish (as manifested by its eigenvalue, A) to “keep up” with the
forcing function.

It should be noted that there is a formal way of presenting the information developed
in this example. That is, both the amplitude and phase characteristics can be plotted ver-
sus frequency in what are called Bode diagrarns. These are conventionally constructed
by plotting either the amplitude or the phase characteristic versus the angular frequency
(w). As shown in Fig. E4.3, we have chosen to plot the characteristics versus the period.
We have also plotted the phase shift in degrees. In the present context we believe that
both modifications make the plots somewhat easier to interpret.
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m Time shifts:
c(t) & c(t-a), where a is the shift



EXAMPLE 4.4. LINEAR AND EXPONENTIAL LOADINGS. O’Connor and
Mueller (1970) used linear and exponential forcing functions to characterize the loadings
of a conservative substance, chloride, to Lake Michigan. For example they characterized
chloride loadings due to road salt by the linear model

W@ =0 t < 1930

W(e) = 13.2 X 10°(t — 1930) 1930 = 1t = 1960

where W(¢) has units of g yr~'. They used an exponential model to characterize other
sources of salt that were correlated with population growth in the basin (for example
municipal and industrial sources),

W =0 t < 1900
W(t) = 229 x 10°0015¢~1900) 1900 = r = 1960

Finally they considered that the lake had a background chloride concentration of
3mgL~l

According to O’Connor and Mueller, Lake Michigan had the following average
characteristics for the period from 1900 to 1960: outflow = 49.1 % 10° m?® yr~! and
volume = 4880 X 10° m>. Calculate the chloride concentration in Lake Michigan from
1900 through 1960.

Solution: Because chloride is a conservative substance, the eigenvalue is simply the
reciprocal of the residence time:

Therefore the solution is
From 1900 to 1930:

9
c =73+ 229 X 10 (+OO15G=1900) _ ,—0.01~1900)y

4880 X 10°(0.01 + 0.015)
From 1930 to 1960:

9
c =3+ 229 X 10 (e+0.015(1—l900) — e~001(1—1900))

4880 x 10°(0.01 + 0.015)
_ 13.2 x 10°
(0.01)24880 x 109
Note that initial conditions are not included explicitly because they are reflected in the

constant background level of 3 mg L™'. The results, along with data, are depicted in
Fig. E4.4.
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EXAMPLE 4.5. HALF-SINUSOID FORCING FUNCTION. The half-sinusoid
(Fig. 4.8a) can be employed in a number of water-quality-modeling contexts. For ex-
ample it has been used successfully to simulate the affect of diurnal variations of plant
photosynthesis on stream dissolved-oxygen levels.

w()
t
{a) Half-sinusoid
W)
FIGURE 4.8
. t Two commonly used periodic inputs.
(b) Pulse train (a) Half-sinusoid; (b) pulse train.

Another example relates to the design of a detention basin. Suppose that during
the summer a company discharges a small flow of a highly concentrated contaminant
into a tributary of a larger river. The company discharges from 6:00 rat. until 6:00 am.
Measurements at the mouth of the tributary indicate that a half-sine wave provides an
adequate approximation of the concentration time series over the period

Cin(1) = cusin{wi) 0=:= %
T,
cin(t) =0 TPstsT‘,

where cin(t) = time series of the inflow concentration at the tributary mouth (ugL™YH
and ¢, = amplitude of the half-sinusoid (g L~!). Note that time zero is assumed to be
at 6:00 em.

It is proposed that the company build a detention basin at the tributary mouth to
moderate the effect of the discharge on the river. The flow in the tributary (including the
discharge) can be adequately characterized by a constantlevel of Q = 1X10°m*d~". In
addition the detention basin’s volume is 1 10° m? and the amplitude of the concentration
is 10 pg L', If no losses occur, determine the long-term concentration response using
the well-mixed-lake model (Eq. 4.1) along with a Fourier-series approximation of the
half-sinusoidal loading up to the second harmonic.

Solution: The mass balance for the detention basin can be written as

dc

o7 + AC = Acip(D)

where the eigenvalue for this example is 0/V = 1. The coefficients for the Fourier-series
approximation of the half-sinusoid can be evaluated, as in

1 172
ag = C"WJ' sin(2mwr)dt = ¢,
[

L
1 T

2
ay = CaTJo sin(2wr) cos(2mt)dr = 0

2 (2 1
b = C“TJ cos(2at) sin(2Qmwe) dt = Cu( )
o
2 172 2
a; = C"TJ sin(2wre)cos(dmt)dt = c, (——)
o

212
by = C“TJ' sin(27rr) sin(dwre)dr = 0
o
Therefore the loading function'can be approximated by (with ¢, = 10)

2
cin() = % + Ssin(2we) — %cos(%‘rt)




Note that the last term can be represented as a sine with a phase shift of 7/2,

sin (4771 + g—) = cos(4rt)
Therefore the loading function becomes

10 .. 20 .
cin(t) = — + 5sin(Rwt) ~ —0 sin {47t + T
™ 3 2
This approximation is displayed in Fig. 4.9a. Notice that although it is not perfect (there
are even some slightly negative values), the series provides a reasonable approximation
of the half-sinusoid.

To evaluate concentration, the approximation is substituted into the mass balance
to give

dc 101 . 20A . T
T + Ac = - + S5Asin(27rt) ﬁsm (477[ + E)

The response can be determined as

c=10, S @m—0- 200 sin(4m+f—e)
EN e Y 3n /R @)y 2
where
(27 .
6, = tan T = 1.413 radians (= 5.5 hr)
oy (4 .
6, = tan T = 1.491 radians (= 5.7 hr)

The results, displayed in Fig. 4.9b, indicate that the detention pond has a definite effect
on the concentration discharged to the river. Whereas the inflow concentration swings
between 0 and 10 wg L~', the pond concentration moves between about 2.4 and 4.1
g L. Further, the peak occurs at about 4:00 a.m. rather than at midnight.
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FIGURE 4.9

Loading and response for a detention basin. (a) Inflow
concentration approximated by a half-sinusoid; (b) the
resulting concentration in the basin.
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EXAMPLE 4.1. STEP LOADING. At time zero, a sewage treatment plant began to
discharge 10 MGD of wastewater with a concentration of 200 mg L~! to a small detention
basin (volume = 20 x 10 m?). If the sewage decays at a rate of 0.1 d™!, compute the
concentration in the system during the first 2 wk of operation. Also determine the shape
parameters to assess the ultimate effect of the plant.

Solution: The flow must be converted to the proper units:

1 m3s™! 86,400 s 3 -1
10MGD22'8245 MGD( 3 ) = 37,854 m° d
The eigenvalue can be determined as
37,854 _ ~1
A= 30 X 107 + 0.1 = 0.28927d

Therefore the concentration can be computed with Eq. 4.10 as

200(37,854)

—_ w Ay —
¢ =5y =™ = 538027020 % 109

(1 — 7028927ty — 131(1 — £ 0289271y
The results for the first 2 wk are

t (d) | 0 2 4 6 8 10 12 14
c(mgL™") l 0 57.48 89.72 107.79 117.92 123.61 126.79 128.58

These values can also be displayed graphically as

160 T

120 +

'/_-\

11 80+
g’l 4
<= 40 +
LS

t(d) FIGURE E4.1

The shape parameters for this case are an ultimate steady-state concentration of
131 mg L~!, of which 95% will be attained in 3/0.28927 = 10.4 d.
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131 mg L™!, of which 95% will be attained in 3/0.28927 = 10.4 d.
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