Lecture 3

Mass Balances in Continuously Stirred Tank
Reactor (CSTR)

To use ‘mass balances’ to develop steady and non-
steady analytical solutions for CSTR-like systems (e.g.,
natural lakes and impoundments)

Steady-state solutions to MBDE:

a) transfer function and

b) residence time

Non-steady state solutions to MBDE:
a) Eigenvalues,
b) general solutions, and

¢) particular solution



Mass balance of a Well-Mixed Lake

Loadmg Outflow FIGURE 3.1

: A mass balance for a well-mixed lake. The

arrows represent the major sources and sinks
l Settling

of the pollutant. The dashed arrow for the
reaction sink is meant to distinguish it from
the other sources and sinks, which are
transport mechanisms.
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Settling losses formulated as a flux of mass
across the sediment-water interface.
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Settling losses formulated as a flux of mass across the sediment-water interface.
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Mass Balance for a Well-mixed
Lake (CSTR-like)

Example of balance of rates for a well-mixed lake:

Accumulation rate =
loading rate — outflow rate — reaction rate — settling rate
or
V(dc/dt) = W(t) - Qc - kVe - VA e
where

W(t) represents all loadings to the lake (i.e., total Q and

average Cin) and the settling rate is modeled by vA ¢ (= k,Vc
with k, = v/H)
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Accuml’n rate:

Loading rate:
Outflow rate:

Reaction rate:

Settling rate:

change of mass, m, in the defined
system or part of it over time t.

mass enters a system from sources.

mass carried from the system by
outflow streams.

mass of pollutant produced or
consumed 1n water

flux of mass lost across the sediment-
water interface.
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(Cont.)

Model predicts concentration as a function of time.

Time 1s an independent variable.
Concentration 1s a dependent variable.
W(t) is the forcing function since 1t ‘forces’ the system.

V, Q, k, vand A_ are parameters (or coefficients).




Steady State Solutlons

If the accumulation rate 1s 0 or “nil”; dc/dt=0
¢ =W/ (Q+kV+vA)

where
c=(1/a) W
a=(Q+kV+vA)

Thus, concentration 1s a function of loading, and depends on
the physics, chemistry and biology of the aquatic
system!!!
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Example 3.1: Steady-State Solution — CSTR
(1.e., Lake)

EXAMPLE 3.1. MASS BALANCE. A lake has the following characteristics:

Volume = 50,000 m?

Mean depth = 2m

Inflow = outflow = 7500 m3>d=+———
Temperature = 25°C

The lake receives the input of a pollutant from three sources: a factory discharge of
50 kg d™!, a flux from the atmosphere of 0.6 g m~2 d~!, and the inflow stream that has
a concentration of 10 mg L ™!, If the pollutant decays at the rate of 0.25d™" at 20°C
(6 = 1.05),

(a) Compute the assimilation factor.

(b) Determine the steady-state concentration.

(¢) Calculate the mass per time for each term in the mass balance and display your
results on a plot.

Solution: (a) The decay rate must first be corrected for temperature (Eq. 2.44):
k = 0.25x1.05%"% = 03194

Then the assimilation factor can be calculated as
a = Q+ kV = 7500 + 0.319(50,000) = 23,454 m>d!

Notice how the units look like flow (that is, volume per time). This is because the same
mass units are used in the numerator and the denominator and they cancel, as in

-1

gd

- mid!
gm™3




EXAMPLE 3.1. MASS BALANCE. A lake has the following characteristics:

Volume = 50,000 m?

Mean depth = 2 m

Inflow = outflow = 7500 m* d~!
Temperature = 25°C

The lake receives the input of a pollutant from three sources: a factory discharge of
50 kg d”!, a flux from the atmosphere of 0.6 gm™2 d"!, and the inflow stream that has
a concentratlon of 10 mg L™, If the pollutant decays at the rate of 0.25d™" at 20°C
(8 = 1.05),

(a) Compute the assimilation factor.

(b) Determine the steady-state concentration.

(¢) Calculate the mass per time for each term in the mass balance and display your
results on a plot.

Solution: (@) The decay rate must first be corrected for temperature (Eq. 2.44):
k = 0.25 x 1.05%°%0 = 0.31947!

Then the assimilation factor can be calculated as
a =0+ kV = 7500 + 0.319(50,000) = 23,454 m*d""

Notice how the units look like flow (that is, volume per time). This is because the same
mass units are used in the numerator and the denominator and they cancel, as in




(b) The surface area of the lake is needed to calculate the atmospheric loading

A, = K = EQEO_O = 25,000 m?

The atmospheric load is then computed as

Wa[mosphcre = JA_; = 0.6(25,000) = 15,000 g d_l
The load from the inflow stream can be calculated as

Wingow = 7500(10) = 75,000 g d™*
Therefore the total loading is
W = Wractory + Watmosphere + Winow = 50,000 + 15,000 + 75,000 = 140,000 g d-!

and the concentration can be determined as (Eq. 3.18)

1

1
¢=W =575

140,000 = 5.97 mgL™!

(c) The loss due to flushing through the outlet can be computed as
Qc = 7500(5.97) = 44,769 g d™!
and the loss due to reaction as
kVe = 0.319(50,000)5.97 = 95,231 g d™!

These results along with the loading can be displayed as in Fig. 3.3.
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Example 3.1: Detailed Mass Balance —

Sources and Sinks

Factory Atmospheric
Inflow loading loading
loading 50kgd - 15kgd ™ Outflow
75 kg d-! (35.7%’) (1 0.7%) 44.8 kg di=l
(53.6%) I / | (32%)
== S

=

Reaction
95.2kgd
(68%)

N

FIGURE 3.3

A mass balance for the well-
mixed lake from Example
3.1. The arrows represent
the major sources and sinks
of the pollutant. The mass-
transfer rates have also
been included along with
the percent of total mass
inflow accounted for by
each term.



Transfer Function ():

“Indicator of the ability of a steady state

system to assimilate pollutants”
If we express W = Q ¢, , we then have that
c/ci, = Q/ (QtkV+HvAy
= 3 or transfer function

If B << 1, lake has large assimilative capacity

If B —1, lake has low assimilative capacity



Example 3.2: Transfer Function and
Residence Time

EXAMPLE 3.2. TRANSFER FUNCTION AND RESIDENCE TIMES. For the
lake in Example 3.1, determine the (a) inflow concentration, (b) transfer function, (c)
water residence time, and (d) pollutant residence time.

Solution: (a) The inflow concentration is computed as

W 140,000
n= — = ——— = 18.67 L-!

c 0 7300 18.67 mg

(b) The transfer coefficient can now be determined as
_c__9 _
B = o T Or RV 0.32
Thus the removal processes act to create a lake concentration that is 32% of the inflow
concentration.
(¢) The residence time can be calculated as
1% 50,000

(d) The pollutant residence time is

.= v o_ 50,000
¢ Q+kV 7500+ 0.319(50,000)

Because of the addition of the decay term, the residence time of a pollutant is about
one-third the water residence time.

= 2.13d
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Solution: (a) The inflow concentration is computed as

w 140,000
== = ——— = 18.67 L!
c 0 7300 18.67 mg
(b) The transfer coefficient can now be determined as
_°c__9 _
B = pelalys a7 0.32

Thus the removal processes act to create a lake concentration that is 32% of the inflow
concentration.
(¢) The residence time can be calculated as

1% 50,000
Tw = é = W = 6.67d
(d) The pollutant residence time is
Vv 50,000

Te = 2.13d

T 0+ kV _ 7500 + 0.319(50,000)

Because of the addition of the decay term, the residence time of a pollutant is about
one-third the water residence time.







Residence Time

“Amount of time required for outflow to replace
water (or pollutant) in the system (lake)”

Water residence time (or “hydraulic”)
t,(ortort) = V/Q

Pollutant residence time

t, = V/(Q+kV+vA)

C



Example 3.4: Residence Time

EXAMPLE 3.4. RESPONSE TIME. Determine the 75%, 90%, 95%, and 99% re-
sponse times for the lake in Example 3.3.

Solution: The 75% response time can be computed as

1.39

t75 = 64—69‘ = 296d

In a similar fashion we can compute to9 = 3.9d, 195 = 6.4d, and tog = 9.8d.
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Solution: The 75% response time can be computed as

1.39

t715 = 64—69 = 2.96d

In a similar fashion we can compute tog = 3.9d, 195 = 6.4d, and tg9 = 9.8d.







Non-steady State 'Sol'utlons _
(temporal or dynamic behavior)

m From a mass balance, we derive that
V(dc/dt) = W(t) - Qc -kVe -vA c, which can
be modified to yield
de/dt + Ac = W(t)/V,
where A = (Q/V) + k + v/H or eigenvalue
A solution for c =c¢, + ¢,

where c, 1s the solutlon for W(t) =0 and c,1s
a solutlon when W(t) #0



The General Solution and Response Time

m A general solution (C=Coatt=0
and W(t) =0) 1s
C=CeM
m Because A 1s not a “clear value” to

non-scientists and engineers, the use
of a response time 1s used for laymen:

Half-life or t;, = 0.693/A
Any t, = (1/A) In [100/(100 - ¢)]



r

Exponential Function &
Temporal Response in CMR Lake

0.693 1.386 FIGURE 3.5
x The exponential function.

Co

Decreasing A

FIGURE 3.6

t The temporal response of our well-mixed

0 1 2 lake model following the termination of all
t loadings at t = 0.




Example 3.3: General Solution

EXAMPLE 3.3. GENERAL SOLUTION. InExample 3.1 we determined the steady-
state concentration for a lake having the following characteristics:

Volume = 50,000 m? Temperature = 25°C
Mean depth = 2 m Waste loading = 140,000 g d~!
Inflow = outflow = 7500 m3 d~! Decay rate = 0.319d"!

If the initial concentration is equal to the steady-state level (5.97 fng L™1), determine the
general solution.

Solution: The eigenvalue can be computed as

/\=Q+k 7500

_ _ -1
v = 50,000 +0.319 = 0.469d

Thus the general solution is

¢ = 5.97¢046%

which can be displayed graphically as

¢ (mg L)

t(d) FIGURE E3.3

Note that by ¢+ = 5 d the concentration is reduced to less than 10% of its original value.
By ¢ = 10 d, for all intents and purposes, it has reached zero.
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Note that by ¢ = 5 d the concentration is reduced to less than 10% of its original value.
By ¢ = 10 d, for all intents and purposes, it has reached zero.
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