
ENV 5666 – Water Quality 
Management

Lecture 2
Fundamentals of Reaction Kinetics and Rates 



Reaction Kinetics & Rates

 Quantitative definition of the rate of transformation 
(appearance or disappearance) of a contaminant 
(e.g., Hg) or indicator (e.g., BOD) in an aquatic 
environment.

 Found theoretically from the stoichiometry of 
chemical reactions (if available) or experimentally 
(mostly in laboratory-controlled conditions).



Reaction Types
 Heterogeneous reaction (i.e., one, 

two or three phases)
 Homogeneous reaction (i.e., only 

one phase)
 Reversible reaction (A↔B): 

Equilibrium Chemistry
 Irreversible reaction (A→B):              

Main focus on single direction with 
rate of disappearance of a reactant  



Reaction Kinetics
Law of Mass Action:

“rate of transformation is proportional to the 
concentration of reactants ”, as follows:

αA + βB +… → products
dcA/dt = - k f(cA,…cI,…) = - k cA

α cB
β = - kcA

n

c     =    concentration of a single reactant
n     =    (α + β) = order of reaction
k     =    reaction rate constant, a temperature-

dependent rate constant





Zero-Order Rate (n = 0)
dc/dt   =   - k

Which, for data obtained in an experiment in a batch reactor, is the
conservation of mass statement (i.e., “Rate of Accumulation =  Rate
of Transformation”).

Then, after integration over time and boundary conditions yields:

c =  c0 – kt

where:
c = c0 at t = 0 and  k has units of ML-3 T-1
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First-Order Rate (n = 1)
dc/dt   =   -kc

which, after integration of data obtained in a batch 
reactor experiment, becomes

ln c – ln c0 =     kt or
c      =     c0 e – kt

where c = c0 at t = 0 and k with units of T -1 

In other words, concentration halves every half-life.
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Second-Order Rate (n = 2)

dc/dt   =   - kc2

which after integration for data from a batch reactor experiment yields:

1/c          =    1/ c0 +  kt

where c = c0 at t = 0 and k has units of (M T)-1L 3
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Methods to Quantify 
the Rate of Reaction, k

(all should be based on regression analysis or least-squares methods)

 Integral Method (Eq.2.7)
 Differential Method (Eq. 2.22)
 Method of Initial Rates (Eq. 2.24)
 Method of Half-lives (Eq. 2.29)
 Method of Excess (i.e., one reactant 

is in excess)
 Numerical Methods (i.e., hand 

calculations or computer programs, 
including MSExcel spreadsheets 
and regression options)



Temperature Effect On Rates

 Rates of most reactions in natural waters increase with 
temperature.

 Rate approximately double every 10oC of increase.
 Arrhenius Equation

k(Ta) = Ae (-E/RT
a
)

where:
A = pre-exponential frequency factor
E  = activation energy  
R  = the gas constant  
Ta = absolute temperature  



Comparison 
of Reaction Rate Constants 

at Two Different Temperatures

 k(Ta2) / k(Ta1)  = e E(T
a2

-T
a1

)/R(T
a2

-T
a1

) ≈ θ (T
2
-T

1
), 

where θ ≈ E/(RTa2Ta1), because most 
temperature ranges are narrow (273-313K, 
0 to 100 centigrade or 32 to 211 F)



Use of Rates Expressions
 In the quantitative representation of the 

“transformation” components (i.e., 
chemical or biological or both, for instance, 
decomposition, oxidation, reduction, 
hydrolysis, photolysis, chemical 
adsorption, etc.) in the conservation of 
mass statement!
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[image: image1.png]EXAMPLE 2.1. INTEGRAL METHOD. Employ the integral method to determine
whether the following data is zero-, first-, or second-order:

1 (d) | 0 1 3 5 10 15 20
c(mgL™h) ' 12 10.7 9 7.1 4.6 25 1.8

If any of these models seem to hold, evaluate & and cq.

Solution: Figure 2.4 shows plots to evaluate the order of the reaction. Each includes the
data along with a best-fit line developed with linear regression. Clearly the plot of In ¢
versus 7 most closely approximates a straight line. The best-fit line for this case is

Inc = 2.47 ~ 0.0972¢ (r* = 0.995)
Therefore the estimates of the two model parameters are

k= 0.097247" -
co=¢e"*" =11.8mgL"™"

Thus the resulting model is
c = 1]'86-0.09721

The model could also be expressed to the base 10 by using Eq. 2.15 to calculate
b= 0.0972

= = 2
2.3025 0.0422

25

Inc 15

0.5 4

(b)

FIGURE 2.4

Plots to evaluate whether the reaction is (@) zero-
(c) order, (b) first-order, or (¢) second-order.

!

which can be substituted into Eq. 2.16,

¢ = 11.8(10)~ 00422

The equivalence of the two expressions can be illustrated

: by computing ¢ at the
same value of time,

c = 11.8¢7 0091205 = 7 9¢
11.8(10)7004225) = 7 9¢

C

Thus they yield the same result.
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[image: image1.png]EXAMPLE 2.2. DIFFERENTIAL METHOD. Use the differential method to eval-
uate the order and the constant for the data from Example 2.1. Use equal-area differen-

tiation to smooth the derivative estimates.

Solution: The data from Example 2.1 can be differentiated numerically to yield the
estimates in Table 2.2. The derivative estimates can be graphed as a bar chart (Fig. 2.7).
Then a smooth curve can be drawn that best approximates the area under the histogram.
In other words try to balance out the histogram areas above and below the drawn curve.
Then the derivative estimates at the data points can be read directly from the curve.
These are listed in the last column of Table 2.2. Figure 2.8 shows a plot of the log of the
negative derivative versus the log of concentration. The best-fit line for this case is

dc
log —;1'7 = -

TABLE 2.2
Data analysis to determine
derivative estimates from time

series of concentration

1.049 + 1.062logc (2 = 0.992)

i 5 KA

dc

_Ac
A
t c
(d) (mgL™ (mgL-'d™"
0 12.0 1.25
1.3
1 10.7 1.1
0.85
3 9.0 0.9
0.95
5 7.1 0.72
0.50
10 4.6 0.45
0.42
15 2.5 0.27
0.14
20 1.8 0.15
\
1IN
kS \\
3 05 -
\
0 I
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FIGURE 2.7
t Equal-area differentiation.
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FIGURE 2.8
Plot of log(—dc/dt) versus log c.

Therefore the estimates of the model parameters are

1.062
k = 10719 = 0.0894d"!

n

Thus the differential approach suggests that a first-order model is a valid approximation.
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[image: image1.png]EXAMPLE 2.3. INTEGRAL LEAST-SQUARES METHOD. Use the integral
least-square method to analyze the data from Example 2.1. Use a spreadsheet to perform
the calculation.

Solution: The solution to this problem is shown in Fig. 2.9. The Excel spreadsheet was
used to perform the computation. Similar calculations can be implemented with other
popular packages such as Quattro Pro and Lotus 123. )

Initial guesses for the reaction rate and order are entered into cells B3 and B4, re-
spectively, and the time step for the numerical calculation 1s typed into cell B5. For this
case a column of calculation times is entered into column A starting at O (cell A7) and
ending at 20 (cell A27). The k; through ks coefficients of the fourth-order RK method
(see Lec. 7 for a description of this method) are then calculated in the block B7..E27.
These are then used to determine the predicted concentrations (the ¢, values) in column
F. The measured values (c,,) are entered in column G adjacent to the corresponding pre-
dicted values. These are then used in conjunction with the predicted values to compute
the squared residual in column H. These values are summed in cell H29.

At this point each of the spreadsheets determines the best fit in a slightly different
way. At the time of this book’s publication, the following menu selections would be made
on Excel (v. 5.0), Quattro Pro (v. 4.5) and 123 for Windows tv. 4.0):

Excel or 123: t(ool) s(olver) QP: t(ool) o(ptimizer)

Once you have accessed the solver or optimizer, you are prompted for a target or so-
lution cell (H29), queried whether you want to maximize or minimize the target cell
(minimize), and prompted for the cells that are to be varied (B3..B4). You then activate
the algorithm [s(olve) or g(0)], and the results are as in Fig. 2.9. As shown, the values in
cells B3..B4 minimize the sum of the squares of the residuals (SSR = 0.155) between the
predicted and measured data. Note how these coefficient values differ from Examples
2.1 and 2.2. A plot of the fit along with the data is shown in Fig. 2.10.

S
A l B l c I D E F G H

1 Fitting of reaction rate

2 data with the integral/ileast-squares approach

3 k 0.091528:

4 n 1.044425

5 dt 1

6 1 K1 K2 K3 k4 cp cm (cp-cmyr2
7 o] '-1v.22653 -1.16114 -1.16462 -1.10248 12 12 0
8 1 -1.10261 -1.04409 -1.04719 -0.99157 10.83658 10.7 0.018653
4 2 -0.99169 -0.93929 -0.94206 -0.89225 9.790448

10 3 -0.89235 -0.84541 -0.84788 -0.80325 8.849344 9 0.022697
11 4 -0.80334 -0.76127 -0.76347 -0.72346 8.002317

12 5 -0.72354 -0.68582 -0.68779 -0.65191 7.238604 71 0.019489
13 6 -0.65198 -0.61814 -0.61989 -0.5877 6.552494

14 7 -0.58776 -0.55739 -0.55895 -0.53005 5.933207

15 8 -0.53011 -0.50283 -0.50424 -0.47828 5.374791

16 9 -0.47833 -0.45383 -0.45508 -0.43175 4.871037

17 10 -0.4318 -0.40978 -0.4109 -0.38993 4.416389 4.6 0.033713
18 11 -0.38997 -0.37016 -0.37117 -0.35231 4.005877

19 12 -0.35234 -0.33453 -0.33543 -0.31846 3.635053

20 13 -0.31849! -0.30246 -0.30326 -0.28798 3.299934

21 14 -0.28801 -0.27357 -0.2743 -0.26054 2.996949
22 15 -0.26056 -0.24756 -0.24821 -0.23581 2.7229 2.5 0.049684
23 16 -0.23583 -0.22411 -0.22469 -0.21352 2474917

24 17 -0.21354 -0.20297 -0.20348 -0.19341 2.250426

25 18 -0.19343 -0.18389 -0.18436 -0.17527 2.047117

26 19 -0.17529 . -0.16668 -0.16711 -0.1589 1.862914

27 20 -0.15891: -0.15115 -0.15153 -0.14412 1.695953 1.8 0.010826
28 ‘

29 SSR = 0.155062

FIGURE 2.9

The application of the integral least-squares method to determine the order and
rate coefficient of reaction data. This application was performed with the Excel
spreadsheet.

1

FIGURE 2.10 -
Plot of fit generated with the integral/least-
t squares approach.

0 10 20
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[image: image1.png]EXAMPLE 2.5. EVALUATION OF TEMPERATURE DEPENDENCY OF RE-
ACTIONS. A laboratory provides you with the following results for a reaction:

T, = 4°C ki =0.124d7!

T, = 16°C ky = 0.20d7!

(a) Evaluate 0 for this reaction.
(b) Determine the rate at 20°C.

Solution: (a) To evaluate this information, we can take the logarithm of Eq. 2.43 and
raise the result to a power of 10 to give

log k(TH)—log k(T)
6 =10 Ty=T,

Substituting the data gives

log 0.12~log 0.20
g =10 4-16 = 1.0435

(b) Equation 2.43 can then be used to compute A
k(20) = 0.20 X 1.0435%71¢ = 0.2374""
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