7.4 EMPIRICAL RELATIVE FREQUENCY RELATIONS

A series of N observations may be ranked in descending order with the highest
value assigned a rank 7 of 1 and the smallest assigned a rank 72 of N. The proba-

bility P, that the observation with rank 72 is equaled or exceeded becomes

m
P, = <N>N—~>oo (7.8)

as the number of observations (sample size) N approaches infinity. Without N
approaching infinity, the relative frequency relation

i
N
provides an estimate of the probability of observation m being equaled or exceeded,
with the accuracy improving with increasing sample size. Equation 7.9 will assign
an exceedance probability of 1.0 to the smallest of the N observations, indicating a
zero probability of obtaining a value less than those observed, which is usually not
correct. Other frequency relations (Egs. 7.10 and 7.11) have been formulated that
eliminate assigning an exceedance probability of 1.0 to an observation. Empirical
frequency relations are often called plotting position formulas because they are used
to plot observations on probability graph paper.
The general form of most plotting position formulas is as follows:

P, = (7.9)

m—a
Pt 2
m N+b

Equation 7.9 with @ = b = 0 and the Weibull formula (Eq. 7.11) with @ = 0 and
b =1 are the most commonly used forms of Eq. 7.10.

(7.10)

m

P,=—

" O N+1

The Weibull formula may be expressed in terms of either annual exceedance prob-
ability or recurrence interval T for rank m and number of years of observation N.

N+1
_N+1 L m

The exceedancerpri(;)bability may be expressed as an exceedance frequency in per-
cent by multiplying P,, and P from Eqgs. 7.8-7.12 by 100 percent.

(7.11)

(7.12)
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TABLE 3.4 Plotting Position Formulas

Form=1
and n=10

Method Solvefor P(X >x) P T

California % 10 10

Hazen .t i .05 20

2n
Beard 1 - (0.5)" 067 14.9
Weibull e 091 11
o F o |
m — 0.3
Chegadayev S 067 14.9
m-}
Blom 5 .061 16.4
n + 7
3m — 1
Tukey F ey 065 15.5
where n = the number of years of record +
m = the rank
a = a parameter depending on # as follows:

n 10 20 30 40 50
a 0.448 0.443 0.442 0.441 0.440
n 60 70 80 90 100
a 0.440 0.440 0.440 0.439 0.439
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EMPIRICAL METHOD

TABLE 7.1 MAXIMUM ANNUAL DISCHARGE IN THE
MISSISSIPPI RIVER AT ST. LOUIS

Flow Flow Flow
Year  (m%s) Year (m?/s) Year (m*/s)
1933 12,400 1955 8,800 1977 11,000
1934 6,260 1956 5,860 1978 16,200
1935 18,500 1957 9,620 1979 19,500
1936 9,450 + 1958 14,300 1980 9,930
1937 10,600 1959 10,300 1981 14,400
1938 12,300 1960 19,000 1982 20,700
1939 15,100 1961 16,700 1983 20,300
1940 5,240 1962 16,700 1984 16,400
1941 14,000 1963 8,510 1985 19,500
1942 18,900 1964 8,710 1986 20,500
1943 23,700 1965 15,600 1987 11,900
1944 23,700 1966 10,500 1988 8,850
1945 17,400 1967 15,000 1989 9,280
1946 14,200 1968 9,790 1990 17,000
1947 22,300 1969 17,500 1991 12,400
1948 17,900 1970 15,300 1992 14,600
1949 12,000 1971 11,900 1993 30,600
1950 13,100 1972 11,500 1994 17,000
1951 22,200 1973 24,200 1995 22,500
1952 19,400 1974 16,500 1996 17,400
1953 10,400 1975 13,700 1997 15,400
1954 8,230 1976 12,700 1998 15,500
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Example 7.4

The Weibull formula is used to develop a frequency relationship for peak flows on
the Mississippi River at St. Louis. The observations of peak annual flows in Table 7.1
are rearranged in ranked order in Table 7.2. Annual exceedance probabilities for each
observed flow are assigned using the Weibull formula. The flows are plotted with
their assigned exceedance frequencies on normal probability paper in Fig. 7.1 and on
log-normal probability paper in Fig. 7.2. These plots and the other information
included in Figs. 7.1 and 7.2 are discussed in Sections 7.6 and 7.7.

TABLE 7.2 FLOWS FROM TABLE 7.1 IN RANKED ORDER WITH P AND T FROM WEIBULL

FORMULA (EXAMPLE 7.4)
Rank Flow Rank Flow

m  P=m[6].T=61/m (m%%) Year m P=m/6] T=61/m (m) Year

Jerz 0.0149 67.0 30,600 1993 34 0.508 1.97 14,600 1992

2 0.0299 335 24200 1973 35 0.522 191 14,400 1981

3 0.0448 223 23,700 1943 36 0.537 1.86 14,300 1958

4 0.0597 16.8 23,700 1944 37 0.552 1.81 14200 1946

5 0.0746 13.4 22,500 1995 38 0.567 176 14,000 1941

6 0.0896 11.2 22,200 1951 39 0.582 1.72 13,700 1975

7 0.1045 9.6 20,700 1982 40 0.597 1.68 13,100 1950

8 0.119 84 20,500 1986 41 0.612 1.63 12,700 1976

9 0.134 74 20,300 1947 42 0.627 1.60 12,400 1933
10 0.149 6.7 20,300 1983 43 0.642 1.56 12,400 1991
11 0.164 6.1 19,500 1979 44 0.657 1.52 12,300 1938
12 0.179 56 19,500 1985 45 0.672 1.49 12,000 1949
13 0.194 52 19,400 1952 46 0.687 1.46 11,900 1971
14 0.209 4.8 19,400 1960 47 0.702 143 11,900 1987
15 0.224 4.5 18,900 1942 48 0.716 1.40 11,500 1972
16 0.239 4.2 18,500 . 1935 49 0.731 1.37 11,000 1977
17 0.254 39 17,900 1948 50 0.746 1.34 10,600 1937
18 0.269 37 17,500 1969 51 0.761 131 10,500 1966
19 0.284 35 17,400 1945 52 0.776 1.29 10,400 1953
20 0.299 3.4 17,400 1996 53 0.791 1.26 10,300 1959
21 0313 3.2 17,000 1990 54 0.806 1.24 9930 1980
22 0.328 3.0 17,000 1994 55 0.821 1.22 9,790 1968
23 0.343 29 16,700 1961 56 0.836 1.20 9,620 1957
24 0.358 2.8 16,700 1962 57 0.851 1.18 9,450 1936
25 0.373 2.7 16,500 1974 58 0.866 1.16 9280 1989
26 0.388 2.6 16,400 1984 59 0.881 1.14 8,850 1988
27 0.403 2.5 16,200 1978 60 0.896 1.12 8,800 1955
28 0.418 24 15,600 1965 61 0.910 1.10 8,710 1964
29 0433 2.3 15,500 1998 62 0.925 1.08 8,510 1963
30 0.448 2.2 15400 1997 63 0.940 1.06 8,230 1954
31 0.463 22 15,300 1970 64 0.955 1.05 6,260 1934
32 0.478 2.1 15,100 1939 65 0.970 1.03 5860 1956
33. 0.493 2.0 15,000 1967 66 0.985 1.02 5,240 1940

With 66 years of observations, the recurrence interval assigned to the highest ob-

served discharge is

with an associated exceedance probability of

/ L
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= 0.0149
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7.6 FREQUENCY GRAPHS

The frequency analysis for the Mississippi River at St. Louis is presented graphi-
cally in Figs. 7.1 and 7.2. These graphs were printed from the Hydrologic Engi-
neering Center-Flood Frequency Analysis (HEC-FFA) (Hydrologic Engineering
Center, 1992) computer program discussed in Section 7.7.1. The confidence limits
on the frequency curves are discussed in Section 7.7.2. The Weibull plotting posi-
tions from Section 7.4 and analytical flow frequency curves from Section 7.5 are
discussed in the following paragraphs.

In Fig. 7.1, flows are on an arithmetic scale versus exceedance frequency on a
normal probability scale. In the log-normal graph of Fig. 7.2, the flows are on a loga-
rithmic scale. The Weibull plotting positions from Table 7.2 are plotted on both graphs
as discussed in Section 7.4. A curve could be drawn through the 66 data points man-
ually based on judgment regarding the best fit. Different people might draw the line
somewhat differently. However, the frequency curve lines actually included on the two
graphs are based on the analytical probability functions discussed in Section 7.5, not
Weibull plotting positions. The frequency curves are fixed precisely by the analytical
distributions with parameters computed from the data. The normal distribution and
log-Pearson type III distribution are graphed in Figs. 7.1 and 7.2, respectively.

The normal distribution is a straight line on graph paper with an arithmetic
scale versus normal probability scale. Thus, the frequency curve in Fig. 7.1 is a
straight line through the 10-year and 100-year recurrence interval flows of 21,500
and 27,000 m*/s determined in Example 7.5 or any other two points computed based
on the normal probability distribution. The log-normal distribution is linear on log-
normal graph paper, which has a logarithmic scale versus normal probability scale
as illustrated by Fig. 7.2. Equivalently, a graph of logarithms of flows plotted on an
arithmetic scale versus exceedance frequencies determined from the log-normal dis-
tribution plotted on a normal scale-is linear. Although the log-normal distribution
is not plotted in Fig. 7.2, it easily could be. The 10-year and 100-year flows deter-
mined in Example 7.5 define a straight line representing the log-normal distribu-
tion on log-normal graph paper.

The log-Pearson type III flow frequency curve is shown in Fig. 7.2, along with
confidence limits that are discussed later in Section 7.7.2. The graph has logarithmic
versus normal probability scales. With a nonzero skew coefficient, the log-Pearson
type III distribution is a nonlinear curve. If the skew coefficient is zero, the log-
Pearson type III distribution is equivalent to the log-normal distribution and plots
as a straight line on log-normal probability paper.

The 1993 flood discussed in Section 2.2.3.2 resulted in a peak discharge of
30,600 m*/s on August 1,1993 at the gage on the Mississippi River at St. Louis. The
log-Pearson type III curve in Fig. 7.2 indicates that 30,600 m>/s has an exceedance
frequency of about 0.4 percent (P =0.004 and 7 =250 years). This analysis
addresses only peak discharge at this particular gaging station. As discussed in
Section 2.2.3.2, the 1993 flood in the Midwest encompassed the Missouri and
Mississippi Rivers and their tributaries in several states. Different recurrence
intervals are assigned at different locations for the same flood.
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