

Assume: Contributing area varies linearly with time.

Since:

$$V_1 = V_2$$

$$CiDA = Q_{\rho}t_{c}$$

But:

$$t_c = D$$

Therefore:

$$Q_p = CiA$$

where

$$Q_p = \text{ft}^3 / \text{sec}$$

$$i = \text{in./hr}$$

$$A = ac$$

Figure 6.15 A rational method hydrograph with derivation.

South Fr. Wanter Salar, M., C. Henry and Structures of the South Salar of the South Structure of the South Salar of the South South

Assume: Contributing area varies linearly with time.

Since

 $V_1 = V_2$ $CiDA = Q_p D$

Therefore,

 $Q_{\rho} = CiA$

where

 $Q_{\rho} = \text{ft}^3 / \text{sec}$ i = in./hr

A = acres

Figure 6.16 A rainfall hyetograph $D > t_c$ with resulting hydrograph and derivation.

FIGURE 6.18 A SCS (NRCS) typical hydrograph.