Precipitation-Runoff Le lationship

Figure 8.1 The runoff at a location results from precipitation falling on the watershed above that location.

Figure 8.2 The direct runoff portion of the streamflow hydrograph results from the rainfall hyetograph.

SOURCE: Works & James, 2002

Abstractions: interception de pression storage inditration, and

Bareflow as from previous precip that infiltered to become groundwater flow

SOURCE: Works & James, 2002

8.3.2 Lag Time

Lag t_L is sometimes viewed as the time between the center of mass of rainfall and center of mass of the runoff hydrograph. However, more typically, t_L is defined as the time between the center of mass of the rainfall and peak of the hydrograph, as illustrated in Fig. 8.5. The t_L can be measured directly from gaged precipitation and streamflow data. However, the primary application of t_L is as a parameter in synthetic unit hydrographs for ungaged watersheds as discussed in Section 8.6. The t_L characterizing an ungaged watershed must be estimated using information available from maps and field surveys. **empirical equations or concentration time, t_c, if known:**

$$t_L = 0.6 t_C$$
 or $t_C = \frac{5}{3} t_L$ (8.2)

Regardless of the method adopted, estimates of t_L and t_C for ungaged watersheds are necessarily approximate and require considerable engineering judgment.

Figure 8.5 The basin lag t_L is the time from the center of mass of the rainfall to the peak of the hydrograph.

SOURCE: Works & Fames, 2002