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Chapter 3 Hydraulic Processes: Flow and Hydrostatic Forces

3.2 CONTROL VOLUME APPROACH FOR HYDROSYSTEMS

Hydrosystem processes transform the space and time distribution of water in hydrologic systems
throughout the hydrologic cycle, in natural and human-made hydraulic systems, and in water
resources systems that include both hydrologic and hydraulic systems. The commonality of all
hydrosystems is the physical laws that define the flow of fluid in these systems. A consistent
mechanism for developing these physical laws is called the control volume approach.

The simplified concept of a system is very important in the control volume approach because of the
extreme complexity of hydrosystems. Typically a system defined from the fluids viewpoint is defined as
a given quantity of mass. A system is also a set of connected parts that form a whole. For the present
discussion the fluids viewpoint will be used, in which the system has a system boundary or control
surface (CS) as shown in Figure 3.2.1. A control surface is the surface that surrounds the control volume.
The control surface can coincide with physical boundaries such as the wall of a pipe or the boundary of a
watershed. Part of the control surface may be a hypothetical surface through which fluid flows.

Two properties, extensive properties and intensive properties, are used in the control volume
approach to apply physical properties for discrete masses to a fluid flowing continuously through
a control volume. Extensive properties are related to the total mass of the system (control
volume), whereas intensive properties are independent of the amount of fluid. The extensive properties
are mass m, momentum mV, and energy E. Corresponding intensive properties are mass per unit mass,
momentum per unit mass, which is velocity v, and energy per unit mass e. In other words, for an
extensive property B, the corresponding intensive property B is defined as the quantity of B per unitmass,
B = dB/dm. Both the extensive and intensive properties can be scalar or vector quantities.

The relationship between intensive and extensive properties for a given system is defined by the
following integral over the system:

B JBdm:JdeV - (3.2.1)

system

where dm and d V are the differential mass and differential volume, respectively, and p is the fluid
density.
The volume rate of flow past a given area A is expressed as
0=V-A (3.2.2)

where V is the velocity, directed normal to the area and points outward from the control volume, and
A is the area vector.

For the control volume in Figure 3.2.1 the net flowrate Q is
Q = Qout—Cin
=V, -A-Vi Ay

= V-A
%S: (32.3)
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Figure 3.2.1 Control volume approach. (a) System and surrounding; (b) Control volume as a system.
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Figure 3.2.2 Control volume at times ¢ and ¢ + At.

In other words, the dot product V - A for all flows in and out of a control volume is the net rate
of outflow.

The mass rate of flow out of the control volume is

d : .
—d’f:m:va-A (3.2.4)
‘ cs
The rate of flow of extensive property B is the product of the mass rate and the intensive property:
dB .
CS

If the velocity varies across the flow section, then it must be integrated across the section, so that the
above equation for the rate of flow of extensive property B from the control volume becomes

B J Bo V- dA (3.2.6)
CS

Considering the system in Figure 3.2.2, the control volume is defined by the control surface at time
I + II) with extensive property B, At time ¢+ At the control volume, defined by the control surface,
(I + ) has moved and has extensive property B; . ;. The rate of change of extensive property B is

dB . B a—B;
— =1 _ 3:2..7
dt Atu—»no[ At ( )
The mass of the system at time £+ A, Mgy ;1 as, 1S
Mgy s+ At = My p Ar + AMoue—Amiy . (3.2.8)
where  m; A, = mass of fluid within the control volume at time ¢ + At
Amigye = mass of fluid that has moved out of the control volume in time A¢
Ami, = mass of fluid that has moved into the control volume in time At
The extensive property of the system at time ¢+ At is
BSys = Bcv,e+ar + ABou—ABiy (3‘2-9)

where Bcy 4+ = amount of extensive property in the control volume at time ¢ + At
AB,,; = amount of extensive property of the system that has moved out of the control
volume in time At
AB;, = amount of extensive property of the system that has moved into the control
volume in time A¢
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The time rate of change of extensive property of the system is

stys S i (BCV,t+At+ABout—ABin)_BCV,t

dt a0 At (210)
The expression can be rearranged to yield
stys . BCV t+At “BCV t . ABout—ABin
—_— = l el e Y O s NS RN e
dt Prac At B Altl—n»l 0 At
Rate of change with Net flow of
B respect to time of ;. extensive property (32.11)
extensive property from the control
in the control volume volume
dBcy  dB
o
dB
The derivative jdtﬂ = J BpdVand %is defined by equation (3.2.5), so that the control volume
cv
equation for one-dimensional flow becomes
B d :
o _ ¢ JdeV+ S peV-A (3212)
&3 .

Ccv

The above equation for the general control volume equation was derived for one-dimensional
flow so that the rate of flow of B at each section is fpV - A. A more general form for rate of flow
of an extensive property considers the velocity as variable across a section. Using equation (3.2.6),
then, the general control volume equation is expressed as

d?;tys :% J[Sp dv + JBpV-dA (3.2.13)
cv cs

This general control volume equation (also referred to as the Reynolds transport theorem) states that
the total rate of change of extensive property of a flow is equal to the rate of change of extensive

property stored in the control volume, % J Bp dV, plus the net rate of outflow of extensive property
cv
through the control surface, J Bp V-dA.

cs
Throughout this book the general control volume equation (approach) is applied to develop
continuity, enefgy, and momentum equations for hydrosystem (hydrologic and hydraulic) processes.

3.3 CONTINUITY

In order to write the continuity equation, the extensive property is mass (B = m) and the intensive
property 8 = dB/dm = 1. By the law of conservation of mass, the mass of a system is constant,
therefore dB/dt = dm/dt = 0. The general form of the continuity equation is then

dt

ozijpdw JpV~dA (3.3.1)
Ccv (@l ;
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which is the integral equation of continuity for an unsteady, variable-density flow. Equation (3.3.1)
can be rewritten as )

d

JpV-dA:EdeV (33.2)
cs cv

which states that the net rate of outflow of mass from the control volume is equal to the rate of

decrease of mass within the control volume.

For flow with constant density, equation (3.3.2) can be expressed as

JV~dA =% J av (33.3)
cs CvV

The continuity equation for flow with a uniform velocity across the flow section and constant density
is expressed as

Y VAl J v (334)
CS dtCV

For a constant-density, steady one-dimensional flow, such as water flowing in a conduit,
the velocity is the mean velocity, then
D VA=0 (3.3.5)
CsS A
For pipe conduit flow we consider a control volume between two locations of the pipe, at sections
1 and 2, then the continuity equation is

—ViA1 + V324, =0 (3.3.6a)

or
Vidi = V24, (3.3.6b)

or
O1=0; (3.3.6¢)

For a constant-density unsteady flow, consider the integral J d 'V as the volume of fluid stored in a
control volume denoted by S, so that v

d ds
= Jdv == (33.7)
Ccv

The net outflow is defined as

JV~dA: JV~dA+ JV~dA
CS outlet inlet

= 0() - 1(1)

Then the integral equation of continuity is determined by substituting equations (3.3.7) and (3.3.8)
into equation (3.3.2) to obtain '

(3.3.8)

o(n) —I(t) = —— (3.3.9)

dt
which is more commonly expressed as
5‘;‘—: =1I(t) — Q(¢) (3.3.10)

This continuity expression is used extensively in describing hydrologic processes.
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A river section is defined by two bridges. At a particular time the flow at the upstream bridge is 100 m*/s,
and at the same time the flow at the downstream bridge is 75 m*/s. At this particular time, what is the rate
at which water is being stored in the river section, assuming no losses?

SOLUTION Using the continuity equation (3.3.10) yields

ds

E = Qup(t) =5 Qdown(t)
=100 m3/s — 75 m3/s
=25m3/s

A reservoir has the following monthly inflows and outflows in relative units:

Month J F M A
Inflows 10 5 0 5
Outflows 5 S 10 0

If the reservoir contains 30 units of water in storage at the beginning of the year, how many units of water
in storage are there at the end of April?

SOLUTION The continuity equation (3.3.10) is used to perform a routing of flows into and out of the reservoir.
Because the inflow and outflows are for discrete time intervals, the continuity equation (3.3.10) can be
reformulated as

ds = I(t)dt—Q(t)dt
and integrated over time intervals j = 1, 2,... J of each length Az:

5 jAt At

J ds = J 1(t)dt— J o)t
2 (-1t (-1)At

or

DLSe e T
AS;=15-0;

where /;and Q; are the volumes of inflow and outflow for the jth time interval. The cumulative storage is
S;j+1 = S;+AS;. For the first interval of time,

AS1=1L—-01=10-5=35
Then S, = 81 +AS; = 30+ 5 = 35. The remaining computations are:

Te. @ L AS

1 10 5 5 30
2 5 5 0 35
3 0 10 -10 25
4 5 0 5 30

3.4 ENERGY

This section uses the first law of thermodynamics along with the control volume approach to develop
the energy equation for fluid flow in hydrologic and hydraulic processes. An energy balance for
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hydrologic and hydraulic processes considers an accounting of all inputs and outputs of energy to
and from a system. By the first law of thermodynamics, the rate of change of energy, E, with time is
the rate at which heat is transferred into the fluid, dH/dt, minus the rate at which the fluid does work
on the surroundings, dW/dt, expressed as

dE A A

dt dt dt (3.4.1)

The total energy of a fluid system is the sum of the internal energy E, the kinetic energy Ej,
and the potential energy E,; thus

E=E,+Ec+E, (3.4.2)

The extensive property is the amount of energy in the system, B = E:

B=E,+E.+E, (3.4.3)
and the intensive property is
dB
B:E’;:e:eu—l—ek-f—ep (344)

where e represents the energy per unit mass. Also, the rate of change of extensive property with
respect to time is

dB _dE _dH dw

The energy balance equation is now derived by substituting B (equation (3.4.4)) and dB/dt
(equation (3.4.5)) into the general control volume equation (3.2.12),

dE dH dw d
E—E——dl—zztjepdv-i—;epV-A (3.4.6)
Ccv

Next we can replace e by equation (3.3.4):
dH dw d
E{_I:EJ("’“”"”P)M” Z(eu+ek+ep)pV~A (3.4.7)
Cs
cv

The kinetic energy per unit mass e, is the total kinetic energy of mass with velocity V divided
by the mass m:

_mV2/2_V_2
e 9,

The potential energy per unit mass e, is the weight of the fluid yV times the centroid elevation z
of the mass divided by the mass:

ek (3.4.8)

Vz vz e
=—=—= 349
% m pVv 8 : ( )
because y/p = g.
Now the general energy equation for unsteady variable density flow can be written as

dH dw d ; S 1%
E‘TE—EJ <e,,+-2—v +gz)pdv+%;<e,,+zV +gz)pV-A (3.4.10)
Ccv
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For steady flow, equation (3.4.10) reduces to

dH dw

o
E_E:Z<eu+ivz+gz>pV-A (3.4.11)
cs

The work done by a system on its surroundings can be divided into shaft work, W, and flow work,
Wr. Flow work is the result of pressure force as the system moves through space and shaft work is any
other work besides the flow work. In the control volume in Figure 3.2.2 the force on the upstream end
of the fluid is p1A; and the distance traveled over time Atis /; = V;Az. Work done on the surrounding
fluid as a result of this force is then the product of the force p;A; in the direction of motion and the
distance traveled, V;Az. The work force on the upstream end is then

Wf1 = —Vip1A1At (34123)
and on the downstream end is
Wy, = VoprAsAt (3.4.12b)

At the upstream end, a negative sign must be used because the pressure force on the surrounding
fluid acts in the opposite direction to the motion of the system boundary. The rate of work at the
upstream and downstream ends are, respectively,

A ,
—= =-Vip1A : 4.13
a0 1P141 € )
and
dw,
L = VypyA, (3.4.14)
dt
The rate of flow work can then be expressed in general terms as
dW;
—=pV-A 3415
Sl (34.15)
or for all streams passing through the control volume as
de D
- %;pVA %;pp (34.16)
The net rate of work on the system can now be expressed as
dw;
az:/ pV A (34.17)

Using equation (3.4.17), the general energy equation (3.4.10) for unsteady variable density flow can
be expressed as

deW

prV A_— J (eu+%V2+gz>pdV+ Z(e,mh%Vzﬂng)pV-A
cs )
C i

(34.18)

which can be written as

dH dw; d  J P e
T ﬁdtJ( +2V +gz>pd\/+ ;( +eu+2V +gz>pV A (3.4.19)
cv
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For steady flow, equation (3.4.19) reduces to
dH dW; _

1
R Z<%+eu+EV2+gz>pV-A (3.4.20)
cs

Determine an expression based upon the energy concept that relates the pressures at the upstream and
downstream ends of a nozzle assuming steady flow, neglecting change in internal energy, and assuming

dH /dt = 0 and dW;/dt = 0.

Using the energy equation (3.4.20) for steady flow yields
dH adw. s P 1 2
G %s:(p +e,+ 2V +gz|pV-A

Neglecting dH/dt and dW/dt the above energy equation can be expressed as

1 1
J(‘% +ey, + —Z—V%+gzz)P VadAr— J(% +ey + EV%+821)PV1‘1A1 =0

2 1

which can be modified to

% v3
J(% +e.,2+g22>p VodA) + J E-z—szz— J(% + ey, +g21>p VidA{— J %l—dAl =0

2 2 i Aq

For hydrostatic conditions, (‘l—’ +ey+ gz) is constant across the system, which allows these terms to be
taken outside the integral:

V3 v3
(Epi +ey, +822> JPVszz+ Jp—z—dAz—(% +€u1+g21> JPVldAl— j i dA1 =0

2 2
Az Az Aq Ay
pV3 V2
The term JdeA is the mass rate of flow, »7, and the term JTdA = rr'1~2—, SO
V2 v?
(‘% + ey, +gzz> m + m—22—~(% + ey +gzl) m—m% =0

Dividing through by m1g and rearranging yields

v} 16
A GNP R
BE b 28 pg & 2g
Y = pg and rearranging yields

V2 2 =

B L P nle o 0w
Y 2 T2
Neglecting changes in internal energy, (e, —e.,)/g =0
n, n. v
St ra= 24
Y 2 1.2

Assuming the control volume is horizontal, z; = z, then

v, Vi _m Vi
Yy 28 Y 2
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SOLUTION

3.5 MOMENTUM

This energy equation relates the pressures assuming steady flow, z; = z;, neglecting change of internal
energy in the fluid and assuming dH /dt = 0 and dW,/dt = 0.

For a nozzle, determine the pressure change through the nozzle between the upstream and downstream
end of the nozzle. Assume steady flow, neglect changes in internal energy of the fluid, assume dH/dt = 0
and dW;/dt = 0, and say that the nozzle is horizontal. Assume the temperature is 20°C. The
velocities at the entrance and exit are V, = 2.55 m/s and V; = 1.13 m/s, respectively.

Using the energy equation derived in example 3.4.1 yields

PN
Yiii2giay g

iyl Nl
pi—p2 ( 2 1)2g
9.79 kN/m3
2 x 9.81 m/s?

= (5.226 m*/s?)(0.499 kN s?/m*)
=2.608 kN/m? = 2.608 kPa = 2608 Pa

= [(2.59) = (1,13)?] %
The pressure change is a pressure decrease of 2608 Pa.

In order to derive the general momentum equation for fluid flow in a hydrologic or hydraulic system, we
use the control volume approach along with Newton’s second law. Newton’s second law states that the
summation of all external forces on a system is equal to the rate of change of momentum of the system

d(momentum)
¥k - dlmomenum)
dt

To apply the control volume approach the extensive property is momentum, B = myv, and the intensive
property is the momentum per unit mass, B = d(mv)/dt, so

__d(mv)
DB o (3.5.2)

A lowercase v is used to denote that this velocity is referenced to the inertial reference frame and to
distinguish it from V.
Using the general control volume equation (3.2.13),
dByys d
— = dy V.-dA 2413
— dtJBp +JBp (3.2.13)
cv cs

(3.5.1)

and from equation (3.5.2) then

ZF:%vadV+vaV-dA P e (859
Ccv CS .

which is the integral momentum equation for fluid flow. For steady flow, equation (3.5.3) reduces to

S F= vaV~dA e (3.5.4)
CS
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When a uniform velocity occurs in the stream crossing the control surface, the integral momentum
equation is

ZF_—vadv+ vav A (3.5.5)

cv

The momentum can be written for the coordinate directions x, y, and z in the Cartesian
coordinate system as '

d
3B | vepdV + %S:vx(pV-A) (3.5.6)
Ccv
d
Y.Fh=7 | wopdv+ %S:vy(pV~A) (3.5.7)
CvV
S F =2 [vpav+ Sv(pv-A) (3.5.8)
s = e
CvV

For a steady flow the time derivative in equation (3.5.6) drops out, yielding
> E=N wpV A : (3.5.9)
cS ;

For a steady flow in which the cross-sectional area of flow does not change along the length
of the flow, Z vp V- A = 0 (referred to as uniform flow), equation (3.5.9) reduces to
Cs

> E=D (3.5.10)

3.6 PRESSURE AND PRESSURE FORCES IN STATIC FLUIDS

In section 3.1.4, pressure, absolute pressure, gauge pressure, piezometric head, and pressure force
were defined. This section extends that conversation to hydrostatic forces on submerged surfaces
and buoyancy.

3.6.1 Hydrostatic Forces

Hydraulic engineers have many engineering applications in which they have to compute the force
being exerted on submerged surfaces. The hydrostatic force on any submerged plane surface
is equal to the product of the surface area and the pressure acting at the centroid of the plane
surface. Consider the force on the plane surface shown in Figure 3.6.1. This plane surface can
be divided into an infinite number of differential horizontal planes with width dy and area dA. The
distance to the incremental area from the axis O—O is y. The pressure on dA is p = Y y sin @ so that
the force dF is dF = pdA = vy sin © dA. The force on the entire submerged plane is obtained by
integrating the differential force on the differential area:

= JyysianA (3.6.1a)
A
=ysin® JydA e iBigB)
A

= Ysin6y.A (3.6.1c)
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