Contaminant Fate and Transport Processes

Amended by Fuentes After P. B. Bedient

Fate and Transport

- Advection and Hydrodynamic Dispersion
- Chemical (abiotic) processes
- Biodegradation (biotic processes)
- Sorption and Retardation (inter-phase transfer)
- Volatilization (inter-phase transfer)

Sorption and Retardation

- Sorption association of dissolved or gaseous contaminant with a solid material
- Adsorption surface process
- Absorption internal process
- Leads to retardation of the contaminant front
- Desorption reverse of either sorption process

Soil Grain Sorption

Linear Sorption Isotherm

Sorption linearly related to aqueous concentration.

Partition coefficient is K_d

K_d is related to K_{ow}

Partitioning to Solid Phase

Octanol water partition coefficient

• Distribution coefficient

• Fraction in aqueous phase

$$k_{ow} = \frac{[A]_{\text{octanol}}}{[A]_{\text{water}}}$$

$$k_d = \frac{[A]_{\text{solid}}}{[A]_{\text{aqueous}}}$$

$$f_w = \frac{1}{1 + \left(\frac{1}{n} - 1\right)k_d}$$

Regression Eqns for Sorption

Equation (a)	No. (b)	<i>r</i> ² (c)	Chemical Class Represented	Ref.
$\log k_{\infty} = -0.55 \log S + 3.64$ (S in mg/L)	106	0.71	Wide variety, mostly pesticides	Kenaga et al., (1978)
$\log k_{\infty} = -0.54 \log S + 0.44$ (S in mole fraction)	10	0.94	Mostly aromatic or polynuclear aromatics; two chlorinated	Karickhoff et al., (1979)
log $k_{\infty} = -0.557$ log S + 4.277 (S in μ moles/L)	15	0.99	Chlorinated hydrocarbons	Chiou et al., (1979)
$\log k_{cc} = 0.544 \log k_{ow} + 1.377$	45	0.74	Wide variety, mostly pesticides	Kenaga et al, (1978)
$\log k_{oc} = 0.937 \log k_{ow} - 0.006$	19	0.95	Aromatics, polynuclear aromatics, triazines and dinitroaniline herbicides	Brown et al. (1981)

Retardation Factor

$$D_x \frac{\partial^2 C}{\partial x^2} - v_x \frac{\partial C}{\partial x} - \frac{\rho_b}{n} \frac{dS}{dt} = \frac{\partial C}{\partial t}$$

$$R\frac{\partial C}{\partial t} = D_x \frac{\partial^2 C}{\partial x^2} - v_x \frac{\partial C}{\partial x}$$

$$R = \left(1 + \frac{\rho_b}{n} k_d\right)$$

Retarded versus Non-retarded Species

- Sorption slows rate of advance of front
- Sorbing fronts will eventually get there
- Some compounds irreversibly sorb to soil

Retardation of Tracers

Abiotic Fate Processes

- Hydrolysis
- Oxidation-Reduction
- Elimination

$$CH_3CH_2Cl \xrightarrow{2e^-} CH_3CH_3 + Cl^-$$

chloroethane

ethane + chloride

Formula	Specific Gravity	Solubility (mg/L)	K _{ow}	Vapor Pressure (mm Hg)	Henry's Law (unitless)		
Fuels and derivatives							
C_6H_6	0.879	1750	130	60	0.22		
$C_6H_5CH_3$	0.866	535	130	22	0.26		
C_8H_{10}	0.867	152	1400	7	0.32		
C_6H_6O	1.071	93,000	29	0.2	1.89×10^{-5}		
Ketones							
	0.791	inf	0.6	89	0.00104		
CH ₃ COCH ₂ CH ₃	0.805	2.68×10^{5}	1.8	77.5	0.00181		
Halogenated aliphatics							
CCI ₂ CCI ₂	1.631	150	390	14	1.21		
C ₂ HCl ₃	1.466	1100	240	60	0.42		
$C_2H_2CI_2$	1.27	3500	5	206	1.33		
CH ₂ CHCl	0.908	2670	24	266	3.58		
	F C_6H_6 $C_6H_5CH_3$ C_8H_{10} C_6H_6O CH_3COCH_3 $CH_3COCH_2CH_3$ H_6 CCI_2CCI_2 C_2HCI_3 $C_2H_2CI_2$	Fuels and C ₆ H ₆ 0.879 C ₆ H ₅ CH ₃ 0.866 C ₈ H ₁₀ 0.867 C ₆ H ₆ O 1.071 Ket CH ₃ COCH ₃ 0.791 CH ₃ COCH ₂ CH ₃ 0.805 Halogenate CCl ₂ CCl ₂ 1.631 C ₂ HCl ₃ 1.466 C ₂ H ₂ Cl ₂ 1.27	Fuels and derivatives $C_6H_6 \qquad 0.879 \qquad 1750$ $C_6H_5CH_3 \qquad 0.866 \qquad 535$ $C_8H_{10} \qquad 0.867 \qquad 152$ $C_6H_6O \qquad 1.071 \qquad 93,000$ $\textbf{Ketones}$ $CH_3COCH_3 \qquad 0.791 \qquad \text{inf}$ $CH_3COCH_2CH_3 \qquad 0.805 \qquad 2.68 \times 10^5$ $\textbf{Halogenated aliphatic}$ $CCl_2CCl_2 \qquad 1.631 \qquad 150$ $C_2HCl_3 \qquad 1.466 \qquad 1100$ $C_2H_2Cl_2 \qquad 1.27 \qquad 3500$	Fuels and derivatives C_6H_6 0.879 1750 130 $C_6H_5CH_3$ 0.866 535 130 C_8H_{10} 0.867 152 1400 C_6H_6O 1.071 93,000 29 Ketones CH_3COCH_3 0.805 2.68 × 10 ⁵ 1.8 Halogenated aliphatics CCl_2CCl_2 1.631 150 390 C_2HCl_3 1.466 1100 240 $C_2H_2Cl_2$ 1.27 3500 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Volatilization

- Transfer of contaminant from aqueous phase, NAPL, or sorbed phase directly to gas phase
- Equilibrium partitioning similar to octanol-water partitioning
- Partitioning equation known as Henry's Law
- H_c is the relationship between partial pressure and aqueous concentration of component

$$H_c = \frac{P_c}{[C]_{aq}}$$

• 20% Oxygen (0.2 atm partial pressure) => 8 mg/L D.O.

Biotic Transformations

- Aerobic and anaerobic biodegradation
- Reduces aqueous concentrations of contaminant
- Reduction of contaminant mass
- Most significant process resulting in reduction of contaminant mass in a system

Biodegradation Processes

- Conversion of contaminants to mineralized (e.g. CO₂, H₂O, and salts) end-products via biological mechanisms
- Biotransformation refers to a biological process where the end-products are not minerals (e.g., transforming TCE to DCE)
- Involves the process of extracting energy from organic chemicals via oxidation of the organic chemicals

Fundamentals of Biodegradation

- All organics are biodegradable, BUT biodegradation requires specific conditions
- There is no Superbug not Volkswagon
- Contaminants must be bioavailable
- Biodegradation rate and extent is controlled by a "limiting factor"

Requirements for Microbial Growth

Electron Acceptor (O₂, NO₃⁻, SO₄²⁻, etc.)

Carbon/ Energy Source

Environment al Conditions (Temp, pH, Eh)

Nut rient s (N, P)

Trace Elements

Electron Exchange

Aerobic vs. Anaerobic

- If oxygen is the terminal electron acceptor, the process is called aerobic biodegradation
- All other biological degradation processes are classified as anaerobic biodegradation
- In most cases, bacteria can only use one terminal electron acceptor
- Facultative aerobes use oxygen, but can switch to nitrate in the absence of oxygen

Bacterial Metabolism

Aerobic

Anaerobic

Oxidation
Cometabolism

Denitrification

Manganese reduction

Iron reduction

Sulfate reduction

Methanogenesis

Electron Acceptor Zone Formation

(Source: W,R, N, & W, 1999.) (Adapted from Lovley et al., 1994b.)

Dependence on Redox Condition

Compound(s)	Aerobic	Anaerobic
Acetone	1	1
BTEX	1	2 to 4
PAH's	1	3 to 4
PCB's		
highly substituted	4	2
minimally substituted	2	4
Chlorinated ethenes		
PCE	4	1 to 2
TCE	3	1 to 2
DCEs	3	2 to 3
Vinyl chloride	1 to 2	3 to 4
1 Highly biodegradable	2 Moderatel	y biodegradable
3 Slow biodegradation	4 Not biodeg	graded

Substrates

- Primary substrate Cake
 - enough available to be the sole energy source
- Secondary substrate Icing
 - provides energy, not available in high enough concentration
- Cometabolism Sprinkles
 - fortuitous transformation of a compound by a microbe relying on some other primary substrate

Transformation Process

Acetone	×				
BTEX	×				
PAHs	×	×			
PCBs highly substitued minimally substituted	×		×		
Chlorinated ethenes					
PCE			×	×	
TCE			×	×	
DCEs			×	×	
Vinyl Chloride	×		×	×	

Stoichiometry

- Electron Donor to Electron acceptor ratios
 - Hydrocarbon requirements for electron acceptor are well defined
 - ◆ Electron donor requirements for dechlorination are poorly defined
 - ◆ Cometabolic processes are not predictable
- Each Electron Donor/Electron Acceptor pair has a unique stoichiometric ratio

Oxygen Utilization of Substrates

- Benzene: $C_6H_6 + 7.5O_2 \longrightarrow 6CO_2 + 3H_2O$
- Stoichiometric ratio (*F*) of oxygen to benzene

$$F = \frac{7.5 \text{ molO}_2}{1 \text{ molC}_6 \text{H}_6} \frac{32 \text{ mgO}_2}{1 \text{ molO}_2} \frac{1 \text{ molC}_6 \text{H}_6}{(12 \bullet 6 + 1 \bullet 6) \text{ mgC}_6 \text{H}_6}$$

$$F = 3.07 \text{ mgO}_2/\text{mgC}_6\text{H}_6$$

• Each mg/L of benzene consumes 3.07 mg/L of O₂

Not accessible

Accessible

GASEOUS

SORBED

AQUEOUS

NON-AQUEOUS

• Region 1: Microbial Growth

 microbes are adjusting to the new substrate (food source)

• Region 2 Exponential growth phase,

 microbes have acclimated to the conditions

• Region 3 Stationary phase,

 limiting substrate or electron acceptor limits the growth rate

Region 4 Decay phase,

substrate supply has been exhausted

Biodegradation Kinetics

- The rate of biodegradation or biotransformation is generally the focus of environmental studies
- Microbial growth and substrate consumption rates have often been described using 'Monod kinetics'

$$-\frac{dS}{dt} = \frac{kSX}{K_s + S}$$

- *S* is the substrate concentration [mg/L]
- *X* is the biomass concentration [mg/L]
- *k* is the maximum substrate utilization rate [sec⁻¹]
- K_S is the half-saturation coefficient [mg/L]

Monod Kinetics

- First-order region, $S << K_S$, the equation can be approximated by exponential decay $(C = C_0 e^{-kt})$
 - 0 /
- Center region, Monod kinetics must be used
- Zero-order region, $S >> K_S$, the equation can be approximated by linear decay $(C = C_0 - kt)$

Modeling Biodegradation

- Three main methods for modeling biodegradation
 - Monod kinetics
 - ♦ First-order decay
 - ♦ Instantaneous reaction

Modeling First-Order Decay

- $C^{n+1} = C^n e^{-k\Delta t}$
- Generally assumes nothing about limiting substrates or electron acceptors
- Degradation rate is proportional to the concentration
- Generally used as a fitting parameter, encompassing a number of uncertain parameters
- BIOPLUME III can limit first-order decay to the available electron acceptors

Modeling Instantaneous Biodegradation

• Excess Hydrocarbon: $H^n > O^n/F$

•
$$Q^{n+1} = 0$$

$$H^{n+1} = H^n - O^n/F$$

• Excess Oxygen: $H^n < O^n/F$

$$\bullet \ O^{n+1} = O^n - H^n F \qquad H^{n+1} = 0$$

$$H^{n+1}=0$$

- All available substrate is biodegraded, limited only by the availability of terminal electron acceptors
- First used in BIOPLUME II

Sequential Electron Acceptor Models

- Newer models, such as BIOPLUME III, RT3D, and SEAM3D allow a sequential process
- After O₂ is depleted, begin using NO₃⁻
- Continue down the list in this order

$$\bullet O_2 \longrightarrow NO_3^- \longrightarrow Fe^{3+} \longrightarrow SO_4^{2-} \longrightarrow CO_2$$

Biodegradation in BIOPLUME II

Principle of Superposition

Initial Hydrocarbon Concentration

Reduced Hydrocarbon Concentration

Background D.O.

Initial Contaminant Plume

Model Parameters

Grid Size 20 x 20 cells

Cell Size 50 ft x 50 ft

Transmissivity 0.002 ft²/sec

Thickness 10 ft

Hydraulic Gradient .001 ft/ft

Longitudinal Dispersivity 10 ft

Transverse Dispersivity 3 ft

Effective Porosity 0.3

Biodegrading Plume

Original Plume Concentration

Plume after two years

Extraction Only - No Added O₂

Plume Concentrations

Plume after two years

O₂ Injected at 20 mg/L

Plume after two years

O₂ Injected at 40 mg/L

Dehalogenation

- Dehalogenation refers to the process of stripping halogens (generally Chlorine) from an organic molecule
- Dehalogenation is generally an anaerobic process, and is often referred to as reductive dechlorination

$$R-C1 + 2e^- + H^+ \longrightarrow R-H + C1^-$$

- Can occur via dehalorespiration or cometabolism
- Some rare cases show cometabolic dechlorination in an aerobic environment

Dehalogenation of PCE

• PCE (perchloroethylene or tetrachloroethylene)

.)

PCE

• TCE (trichloroethylene)

• DCE (cis-, trans-, and

1,1-dichloroethylene

• VC (vinyl chloride)

 $CI \qquad H \qquad TCE$ $CI \qquad CI \qquad CI \qquad CI \qquad H$ $CI \qquad CI \qquad CI \qquad CI \qquad CI \qquad H$ $H \qquad CI \qquad CI \qquad H$ $C = C \qquad H \qquad VC$

DCE's

Biodegradation Models

- Bioscreen
- Biochlor
- BIOPLUME II and III
- RT3D
- MT3D MS
- SEAM 3D