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9.1 ROUTING

Reservoir and Stream
Flow Routing

Figure 9.1.1 illustrates how stream flow increases as the variable source area extends into the
drainage basin. The variable source area is the area of the watershed that is actually contributing
flow to the stream at any point. The variable source area expands during rainfall and contracts
thereafter.

Flow routing is the procedure to determine the time and magnitude of flow (i.e., the flow
hydrograph) at a point on a watercourse from known or assumed hydrographs at one or more points
upstream. If the flow is a flood, the procedure is specifically known as flood routing. Routing by
lumped system methods is called hydrologic (lumped) routing, and routing by distributed systems
methods is called hydraulic (distributed) routing.

For hydrologic routing, input 1(f), output Q(), and storage S(z) as functions of time are related by
the continuity equation (3.3.10)

ds
=5 =10 -00) (9.1.1)

Even if an inflow hydrograph I(¢) is known, equation (9.1.1) cannot be solved directly to obtain the
outflow hydrograph Q(), because, both Q and S are unknown. A second relationship, or storage
function, is required to relate S, I, and Q; coupling the storage function with the continuity equations
provides a solvable combination of two equations and two unknowns.

The specific form of the storage function depends on the nature of the system being analyzed. In
reservoir routing by the level pool method (Section 9.2), storage is a nonlinear function of 0, S = f
(Q), and the function f{Q) is determined by relating reservoir storage and outflow to reservoir water
level. In the Muskingum method (Section 9.3) for flow routing in channels, storage is linearly related
to [ and Q.

The effect of storage is to redistribute the hydrograph by shifting the centroid of the inflow
hydrograph to the position of the outflow hydrograph in a time of redistribution. In very long
channels, the entire flood wave also travels a considerable distance, and the centroid of its
hydrograph may then be shifted by a time period longer than the time of redistribution. This
additional time may be considered the time of translation. The total time of flood movement
between the centroids of the inflow and outflow hydrographs is equal to the sum of the time of
redistribution and the time of translation. The process of redistribution modifies the shape of the
hydrograph, while translation changes its position. :
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Shallow soil
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Figure 9.1.1 The small arrows in the hydrographs show how streamflow increases as the variable source extends into swamps, ,
shallow soils, and ephemeral channels. The process reverses as streamflow declines (from Hewlett (1982)).

9.2 HYDROLOGIC RESERVOIR ROUTING

Level pool routing is a procedure for calculating the outflow hydrograph from a reservoir assuming a
horizontal water surface, given its inflow hydrograph and storage-outflow characteristics. Equation
(9.1.1) can be expressed in the infinite-difference form to express the change in storage over a time
interval (see Figure 9.2.1) as

=If+]j+1At— Qj+Qj+1At

Sj+1=5 2 2

(9.2.1) -

The inflow values at the beginning and end of the jth time interval are I;and I; , 1, respectively,
and the corresponding values of the outflow are Q; and Qj+1. The values of I; and [j41
are prespecified. The values of Q; and S; are known at the jth time interval from calculations
for the previous time interval. Hence, equation (9.2.1) contains two unknowns, Q;,1 and
Sj+1, which are isolated by multiplying (9.2.1) through by 2 /At, and rearranging the result to
produce:

2S;
+Qj+1} = (L +141)+ [A‘tj _'Qj:| (9.2.2)
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Figure 9.2.1 Change of storage during a routing period At.

In order to calculate the outflow Q; 41, a storage-outflow function relating 25/At+ Q and Q is
needed. The method for developing this function using elevation-storage and elevation-outflow
relationships is shown in Figure 9.2.2. The relationship between water surface elevation and
reservoir storage can be derived by planimetering topographic maps or from field surveys. The
elevation-discharge relation is derived from hydraulic equations relating head and discharge for
various types of spillways and outlet works. (See Chapter 17.) The value of At is taken as the time
interval of the inflow hydrograph. For a given value of water surface elevation, the values of storage S
and discharge Q are determined (parts (a) and (b) of Figure 9.2.2), and then the value of 285/At+Qis
calculated and plotted on the horizontal axis of a graph with the value of the outflow Q on the vertical
axis (part (c) of Figure 9.2.2).

Inrouting the flow through time interval j, all terms on the right side of equation (9.2.2) are known,
and so the value of 2S;,.1/At+ Q;+1 can be computed. The corresponding value of Q;+1 can be
determined from the storage-outflow function 25/At + Q versus Q, either graphically or by linear
interpolation of tabular values. To set up the data required for the next time interval, the value of
(285 41/At— Q1) is calculated using

28; +1 2S;
\: i:- —Qj+1] = [ A;l +Qj+1] ~2Q+1 (9.2.3)

The computation is then repeated for subsequent routing periods.
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-Figure.9.2.2..Development of the storage-outflow.function for level pool routing on the basis of
storage-elevation-outflow curves (from Chow et al. (1988)).

Consider a 2-acre stormwater detention basin with vertical walls. The triangular inflow hydrograph
increases linearly from zero to a peak of 60 cfs at 60 min and then decreases linearly to a zero discharge at
180 min. Route the inflow hydrograph through the detention basin using the head-discharge relationship
for the 5-ft diameter pipe spillway in columns (1) and (2) of Table 9.2.1. The pipe is located at the bottom
of the basin. Assuming the basin is initially empty, use the level pool routing procedure with a 10-min time
interval to determine the maximum depth in the detention basin.

SOLUTION The inflowhydrograph and the head-discharge (columns (1) and (2)) and discharge-storage (columns (2)
and (3)) relationships are used to determine the routing relationship in Table 9.2.1. A routing interval of
10 min is used to determine the routing relationship 25 /At 4 Q vs. Q, which is columns (2) and (4) in Table
9.2.1. The routing computations are presented in Table 9.2.2. These computations are carried out using
equation (9.2.3). For the first time interval, Sy = Q1 = 0 because the reservoir is empty at ¢ = 0; then
(281/At — Q1) = 0. The value of the storage-outflow function at the end of the time interval is

25

The value of Q, is determined using linear interpolation, so that

3-0)

Q2 =0+ 530y

(10-0)=02cfs




9.2 Hydrologic Reservoir Routing 335

Table 9.2.1 Elevation-Discharge-Storage Data for Example 9.2.1

1 2 3 4
Head Discharge Storage 25
2 0
H (§) 0 (cfs) s () & Tl

0.0 0 0 0.00
05 ‘ 3 43,500 148.20
1.0 8 87,120 298.40
1.5 17 130,680 452.60
2.0 30 174,240 610.80
25 43 217,800 769.00
3.0 60 261,360 931.20
35 78 304,920 1094.40
4.0 97 348,480 ’ 1258.60
45 117 392,040 1423.80
5.0 137 435,600 1589.00

Table 9.2.2 Routing of Flow Through Detention Reservoir by the Level Pool Method (Example 9.2.1)

' 25; 28;
Time Inflow L+l L A;r :

YR +0j+1 Outflow
t (min) I; (cfs) (cfs) (cfs)

(cfs) (cfs)

0.00 0.00 0.00
10.00 10.00 10.00 0.00 10.00 0.20
20.00 20.00 30.00 9.60 39.60 0.80
30.00 30.00 50.00 37.99 87.99 1.78
40.00 40.00 70.00 84.43 154.43 321
50.00 50.00 90.00 148.01 238.01 5.99
60.00 60.00 110.00 226.04 336.04 10.20
70.00 55.00 115.00 315.64 430.64 15.72
80.00 50.00 105.00 399.21 504.21 21.24
90.00 45.00 95.00 461.72 556.72 25.56

100.00 40.00 85.00 505.61 590.61 28.34
110.00 35.00 75.00 533.93 608.93 29.85
120.00 30.00 65.00 549.24 614.24 30.28
130.00 25.00 55.00 553.67 608.67 29.83
140.00 20.00 45.00 549.02 594.02 28.62
150.00 15.00 35.00 536.78 571.78 26.79
160.00 10.00 25.00 518.19 543.19 24.44
170.00 5.00 15.00 494.30 509.30 21.66
180.00 0.00 5.00 465.98 470.98 18.51
190.00 0.00 0.00 433.96 433.96 15.91
200.00 0.00 0.00 402.14 402.14 14.05
210.00 0.00 0.00 374.03 374.03 12.41
220.00 0.00 0.00 349.20 349.20 10.97
230.00 0.00 0.00 327.27 327.27 9.69
240.00 0.00 0.00 307.90 307.90 8.55

With Q; = 0.2, then 25, /At — O, for the next iteration is

28 28
{_A-tz - Qz] = [th- +Q2] —20; =10-2(02) =9.6cfs

The computation now proceeds to the next time interval. Refer to Table 9.2.2 for the remaining
computations.
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9.3 HYDROLOGIC RIVER ROUTING

The Muskingum method is a commonly used hydrologic routing method that is based upon a
variable discharge-storage relationship. This method models the storage volume of flooding
in a river channel by a combination of wedge and prism storage (Figure 9.3.1). During the
advance of a flood wave, inflow exceeds outflow, producing a wedge of storage. During the
recession, outflow exceeds inflow, resulting in a negative wedge. In addition, there is a prism of
storage that is formed by a volume of constant cross-section along the length of prismatic
channel.

Assuming that the cross-sectional area of the flood flow is directly proportional to the discharge
at the section, the volume of prism storage is equal to KQ, where K is a proportionality coeffi-
cient (approximate as the travel time through the reach), and the volume of wedge storage is equal to
KX(I - Q), where X is a weighting factor having the range 0 < X < 0.5. The total storage is defined
as the sum of two components,

S=KQ+KX(I-Q) (9.3.1)

which can be rearranged to give the storage function for the Muskingum method

§ = K[XI + (I - X)Q] (9.3.2)

and represents a linear model for routing flow in streams.

The value of X depends on the shape of the modeled wedge storage. The value of X ranges
from 0 for reservoir-type storage to 0.5 for a full wedge. When X = 0, there is no wedge and
hence no backwater; this is the case for a level-pool reservoir. In natural streams, X is between 0
and 0.3, with a mean value near 0.2. Great accuracy in determining X may not be necessary
because the results of the method are relatively insensitive to the value of this parameter. The
parameter K is the time of travel of the flood wave through the channel reach. For hydrologic
routing, the values of K and X are assumed to be specified and constant throughout the range
of flow,

Wedge storage
= KX(I- Q)

Prism
storage = KQ

Figure 9.3.1 Prism and wedge storages in a channel reach.
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The values of storage at time j and j + 1 can be written, respectively, as
8y = KIXp; + (1 - X)Q)] (9.3.3)
Sjiv1=K[XL1+(1-X)Q+1] (9.3.4)
Using equations (9.3.3) and (9.3.4), the change in storage over time interval At is
Sy — 8 = K{{XT 1 + (1= 0)Qy 1] - K+ (1 -X)0)} (9.3.5)

The change in storage can also be expressed using equation (9.2.1). Combining equations (9.3.5) and
(9.2.1) and simplifying gives -

Qi1 =Cili 1+ Cli+C30; (9-3.6)

which is the routing equation for the Muskingum method, where

At—2KX

At+2KX
oo 2 2K(1-X) A 9.3.9)
3T 2K(1—X)+ At 7

Note that C1 + C; +C3 = 1.

The routing procedure can be repeated for several sub-reaches (Nyeps) S0 that the total travel time
through the reach is K. To insure that the method is computationally stable and accurate, the U.S.
Army Corps of Engineers (1990) uses the following criterion to determine the number of routing
reaches:

1 K 1
< < —
2(1 = X) = NeepsBt = 2X

(9.3.10)

If observed inflow and outflow hydrographs are available for a river reach, the values of Kand X
can be determined. Assuming various values of X and using known values of the inflow and outflow,
successive values of the numerator and denominator of the following expression for K, derived from
equations (9.3.5) and (9.2.1), can be computed using

_ 05A (1 +1) = (Qj+1+ Q)]
X1 -5+ -XNQ+1- Q)

(9.3.11)

The computed values of the numerator (storage) and denominator (weighted discharges) are
plotted for each time interval, with the numerator on the vertical axis and the denominator on the
horizontal axis. This usually produces a graph in the form of a loop, as shown in Figure 9.3.2.
The value of X that produces a loop closest to a single line is taken to be the correct value for the
reach, and K, according to equation (9.3.11), is equal to the slope of the line. Since K is the time
required for the incremental flood wave to traverse the reach, its value may also be estimated as
the observed time of travel of peak flow through the reach.
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40,000

Weighted discharge in cubic feet per second

74

// W

X=0.2 X=0.3
10,000 20,000 30,000 0 10,000 20,000 30,000
Storage in 1-day cubic feet per second

Figure 9.3.2 Typical valley storage curves (after Cudworth (1989)).

The objective of this example is to determine K and X for the Muskingum routing method using the
February 26 to March 4, 1929 data on the Tuscarawas River from Dover to Newcomerstown., This example
is taken from the U.S. Army Corps of Engineers (1960) as used in Cudworth (1989). Columns (2) and (3)
in Table 9.3.1 are the inflow and outflow hydrographs for the reach. The numerator and denominator of

ed (for each time period) using four values of X = 0,0.1,0.2,and 0.3. The
accumulated numerators are in column (9) and the accumulated denominators (weighted discharges) are
in columns (11), (13),(15),and (17). In Figure 9.3.2, the accumulated numerator (storages) from column
(9) are plotted against the corresponding accumulated denominator (weighted discharges) for each of the
four X values. According to Figure 9.3.2, the best fit (linear relationship) appears to be for X = 0.2, which
has aresulting K = 1.0. To perform arouting, K should equal A¢, sothatif At = 0.5 day, as in this case, the
reach should be subdivided into two equal reaches (Nsteps = 2) and the value of X should be 0.5 day for
each reach.
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Route the inflow hydrograph below using the Muskingum method; Af = 1 hr, X = 0.2, K = 0.7 hr

Time (hr) 0 1 2 3 4 5 6
Inflow (cfs) 0 800 2000 4200 5200 4400 3200 2500
8

Time (hr) 9 10 11 12 13
Inflow (cfs) 2000 1500 1000 700 400 0

=0.3396

_1.0-2(0.7)(0.2)
T 2(07)(1-02)+1.0
c, — _10+2(0.7)(0.2)

27 2007)(1=02)+1.0

_2(0.7)(1-0.2)-1.0
T 307)(1-02)+1.0

= (0.6038

= 0.0566

(Adapted from Masch (1984).)

Check to see if C; +Cy +C3 = 1:

0.3396 +0.6038 +0.0566 = 1

Using equation (9.3.6) with I; = Ocfs, I, = 800 cfs, and Q; = 0 cfs, compute O, at ¢ = 1 hr:

O = Cih+ Gl 4+ C30y
= (0.3396)(800) + 0.6038(0) + 0.0566(0)
= 272 cfs (7.7 m%/s)

Next compute Q3 at t = 2hr :

Q3 = G153+ G2 + C30, :
= (0.3396)(2000) + 0.6038(800) + 0.0566(272)
= 1,178 cfs (33 m?/s)

The remaining computations. result in

Time (hr) 0 1 2 3 4 5 6
Q (cfs) 0 272 1178 2701 4455 4886 4020 3009
8

Time (hr) 9 10 11 12 13 14
Q (cfs) 2359 1851 1350 918 610 276 16

9.4 HYDRAULIC (DISTRIBUTED) ROUTING

Distributed routing or hydraulic routing, also referred to as unsteady flow routing, is based upon th
one-dimensional unsteady flow equations referred to as the Saint-Venant equations. The hydtologi
river routing and the hydrologic reservoir routing procedures presented previously are lumped
procedures and compute flow rate as a function of time alone at a downstream location. Hydrauli
(distributed) flow routings allow computation of the flow rate and water surface elevation (ordepth)a
a function of both space (location) and time. The Saint-Venant equations are presented in Table 9.4.
in both the velocity-depth (nonconservation) form and the discharge-area (conservation) form.
The momentum equation contains terms for the physical processes ‘that govern the flow
momentum. These terms are: the local acceleration term, which describes the change in momentum
due to the change in velocity over time, the convective acceleration term, which describes th
change in momentum due to change in velocity along the channel, the pressure force term
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Table 9.4.1 Summary of the Saint-Venant Equations*

Continuity equation

o
Conservation form -2 + ?é =0
Ox Ot
0 oV ©
Nonconservation form V-—X + — = ¥ 0
ox Ox Ot
Momentum equation
Conservation form
190 19 (Q? 0y
2% 22 (% b - — =0
i T A6x<A L 85 57)
Local Convective Pressure Gravity  Friction
acceleration acceleration force force force
term term term term term
Nonconservation form (unit with element)
ov ov oy
o + Vv ™ + 4 3 - g(So - S =0

! : Kinematic wave

| Diffusion wave
Dynamic wave

e

*Neglecting lateral inflow, wind shear, and eddy losses, and assuming § = 1.

x = longitudinal distance along the channel or river, ¢ = time, A = cross-sectional area of flow, h = water surface
elevation, Sy = friction slope, So = channel bottom slope, g = acceleration due to gravity, V= velocity of flow, and y =
depth of flow.

proportional to the change in the water depth along the channel, the gravity force term, proportional
to the bed slope Sy, and the friction force term, proportional to the friction slope Sy The local and
convective acceleration terms represent the effect of inertial forces on the flow.

Alternative distributed flow routing models are produced by using the full continuity equation
while eliminating some terms of the momentum equation (refer to Table 9.4.1). The simplest
distributed model is the kinematic wave model, which neglects the local acceleration, convective
acceleration, and pressure terms in the momentum equation; that is, it assumes that So = Sy and the
friction and gravity forces balance each other. The diffusion wave model neglects the local and
convective acceleration terms but incorporates the pressure term. The dynamic wave model
considers all the acceleration and pressure terms in the momentum equation.

The momentum equation can also be written in forms that take into account whether the flow is
steady or unsteady, and uniform or nonuniform, as illustrated in Table 9.4.1. In the continuity
equation, 0A /0t = O for a steady flow, and the lateral inflow g is zero for a uniform flow.

Equations: Continuity Equation

The continuity equation for an unsteady variable-density flow through a control volume can be
written as in equation (3.3.1):

O:%dev+ JpV-dA (9.4.1)
cv Cs
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Figure 9.4.1 An elemental reach of channel for derivation of Saint-Venant equations.

Consider an elemental control volume of length dx in a channel. Figure 9.4.1 shows three views o
the control volume: (@) an elevation view from the side, (b) a plan view from above, and (¢) a channe
cross-section. The inflow to the control volume is the sum of the flow Q entering the control volum
at the upstream end of the channel and the lateral inflow q entering the control volume as a distribute
flow along the side of the channel. The dimensions of q are those of flow per unit length of channel, so
the rate of lateral inflow is gdx and the mass inflow rate is '

JpV -dA = —p(Q+qdx)

inlet
This is negative because inflows are considered negative in the control volume approach (Reynolds
transport theorem). The mass outflow from the control volume is

_ (00

outlet
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where 0Q/0x is the rate of change of channel flow with distance. The volume of the channel element
is Adx, where A is the average cross-sectional area, so the rate of change of mass stored within the
control volume is

d 0(pAdx)

—lody =" 9.4.4

dt J P Y ©44)

cv

where the partial derivative is used because the control volume is defined to be fixed in size (though
the water level may vary within it). The net outflow of mass from the control volume is found by
substituting equations (9.4.2)~(9.4.4) into (9.4.1):

O(pAdx)
dt

0
—p(Q+qu)+p<Q+/£dx) =0 (9.4.5)
Assuming the fluid density p is constant, equation (9.4.5) is simplified by dividing through by pdx
and rearranging to produce the conservation form of the continuity equation,

0Q 0A

R
which is applicable at a channel cross-section. This equation is valid for a prismatic or a non-
prismatic channel; a prismatic channel is one in which the cross-sectional shape does not vary along
the channel and the bed slope is constant.

For some methods of solving the Saint-Venant equations, the nonconservation form of the
continuity equation is used, in which the average flow velocity Vis a dependent variable, instead of
Q. This form of the continuity equation can be derived for a unit width of flow within the channel,
neglecting lateral inflow, as follows. For a unit width of flow,A =y x 1 =yand @ = VA = Vy.
Substituting into equation (9.4.6) yields

g=0 (9.4.6)

o(Wy) Oy _
x + FYie 0 (9.4.7)
or
gy , oV dy
Var Ve T 048)

4.2 Momentum Equation
Newton’s second law is written in the form of Reynolds transport theorem as in equation (3.5.5):

d
) F= ¥ J VpdV + ECS:VdeA (9.4.9)

cv

This states that the sum of the forces applied is equal to the rate of change of momentum stored
within the control volume plus the net outflow of momentum across the control surface. This
equation, in the form Y F = 0, was applied to steady uniform flow in an open channel in Chapter 5.
Here, unsteady nonuniform flow is considered.

Forces. There are five forces acting on the control volume:

Y F=Fy+F+F.+F, (9.4.10)

where F, is the gravity force along the channel due to the weight of the water in the control volume,
Fyis the friction force along the bottom and sides of the control volume, F, is the contraction/
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expansion force produced by abrupt changes in the channel cross-section, and F is the unbalance

pressure force (see Figure 9.4.1). Each of these four forces is evaluated in the following paragrap
Gravity. The volume of fluid in the control volume is Adx and its weight is pgAdx. For a sma

angle of channel inclination 6, Sy = sin 0 and the gravity force is given by :

Fg = pgAdx sin 0 =~ pgASodx

where the channel bottom slope Sy equals — 0z/0x.

wetted perimeter. Hence the friction force is written as
Fy = —pgASydx

where the friction slope Sy is derived from resistance equations such as Manning’s equation.

Contraction/expansion. Abrupt contractions or expansions of the channel cause energy losse;
through eddy motion. Such losses are similar to minor losses in a p1pe system. The magnitude ¢
eddy losses is related to the change in velocity head V?/2g = (Q/A) /2g through the length o
channel causing the losses. The drag forces creating these eddy losses are given by

F, = — pgAS.dx (9.4.13
where S, is the eddy loss slope

K. 9(Q/A)*

Se:Z_g Ox

in which K, is the nondimensional expansion or contraction coefficient, negative for chann
expansion (where 0(Q/A)*/0x is negative) and positive for channel contractions.

Pressure. Referring to Figure 9.4.1, the unbalanced pressure force is the resultant of th
hydrostatic force on the each side of the control volume. Chow et al. (1988) provide a detaile
derivation of the pressure force F), as simply

= pgA Y
F,= pgAé-;dx

The sum of the forces in equation (9.4.10) can be expressed, after substituting equations (9.4.1 I
(9.4.12), (9.4.13), and (9.4.15), as

) F = pASodx — pgAS;dx — pgASedx — pgA g—iidx

Momentum. The two momentum terms on the right-hand side of equation (9.4.9) represent th
rate of change of storage of momentum in the control volume, and the net outflow of momentuni
across the control surface, respectively.

Net momentum outflow. The mass inflow rate to the control volume (equation 9.4.2))

— p(Q + qdx), representing both stream inflow and lateral inflow. The corresponding momentu
is computed by multiplying the two mass inflow rates by their respective velocity and a momeniu
correction factor f3:

Jva dA = —p(BVQ+Bregdr) (9.4.1
inlet

where —pBVQ is the momentum entering from the upstream end of the channel, and — pPv.qdx
the momentum entering the main channel with the lateral inflow, which has a velocity v, in the
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direction. The term [} is known as the momentum coefficient or Boussinesq coefficient; it accounts for
the nonuniform distribution of velocity at a channel cross-section in computing the momentum. The
value of B is given by

B= ViAJ vAdA (9.4.18)

where v is the velocity through a small element of area dA in the channel cross-section. The value of §
ranges from 1.01 for straight prismatic channels to 1.33 for river valleys with floodplains (Chow,
1959; Henderson, 1966).

The momentum leaving the control volume is

J VpVdA=p [BVQ + = a(BVQ) x] (9.4.19)

outlet

The net outflow of momentum across the control surface is the sum of equations (9.4.17) and
(9.4.19):

J VoV dA = —p(BVQ+ Bregdx) +p [BVQ + 2 a(BVQ) ] -p [Bvxq - g%x;_@} dx  (9.4.20)
CcS

Momentum storage. The time rate of change of momentum stored in the control volume is found by
using the fact that the volume of the elemental channel is Adx, so its momentum is pAdxV, or pQdx,
and then

di J VpdV = paQ (9.4.21)
CV

After substituting the force terms from equatidn (9.4.16) and the momentum terms from equations
(9.4.20) and (9.4.21) into the momentum equation (9.4.9), it reads

PgASodx — pgASrdx — pgASedx — pgAg—idx = —p [ﬁvxq - a(g‘;g)] dx+p aa—(tzdx (9.4.22)

Dividing through by pdXx, replacing V with Q/A, and rearranging produces the conservation form of
the momentum equation:

o(B@/A) y ~
6t 2,2 T A(@ =50 +Sf+Se> ~Bgvx =0 (9.4.23)

The depth y in equation (9.4.23) can be replaced by the water surface elevation A, using
h=y+z (9.4.24)

where z is the elevation of the channel bottom above a datum such as mean sea level. The derivative
of equation (9.4.24) with respect to the longitudinal distance x along the channel is

oh _dy Bz

% ox + = 5 (9.4.25)

but 0z/9x = — Sy, so

oh dy

= =Sy (9.4.26)
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The momentum equation can now be expressed in terms of / by using equation (9.4.26) in (9.4.23

8Q  d(BQ*/4) oh _
3T T oy teA (& +Sf+Se) —PBgvx =0 (9.4.2

The Saint-Venant equations, (9.4.6) for continuity and (9.4.27) for momentum, are the governiy
equations for one-dimensional, unsteady flow in an open channel. The use of the terms Srand S, §
equation (9.4.27), which represent the rate of energy loss as the flow passes through the channe
illustrates the close relationship between energy and momentum considerations in describing ki
flow. Strelkoff (1969) showed that the momentum equation for the Saint-Venant equations can as
be derived from energy principles, rather than by using Newton’s second law as presented here

The nonconservation form of the momentum equation can be derived in a similar manner to th
nonconservation form of the continuity equation. Neglecting eddy losses, wind shear effect, an
lateral inflow, the nonconservation form of the momentum equation for a unit width in the flow ;

ov Va_v

(9.4.28

discussion of the kinematic wave followed by a brief description of the very simplest linear models;
such as those found in the U.S. Army Corps of Engineers HEC-HMS and HEC-1, and the more
complicated models such as the KINEROS model (Woolhiser et al., 1990).

Kinematic waves govern flow when inertial and pressure forces are not important. Dynami
waves govern flow when these forces are important, as in the movement of a large flood wave in
wide river. In a kinematic wave, the gravity and friction forces are balanced, so the flow does n
accelerate appreciably.

For a kinematic wave, the energy grade line is parallel to the channel bottom and the flow is stea
and uniform (Sy = S;) within the differential length, while for a dynamic wave the energy gradeli
and water surface elevation are not paralle] to the bed, even within a differential element.

9.5.1 Kinematic Wave Equations

A wave is a variation in a flow, such as a change in flow rate or water surface elevation, and the wav
celerity is the velocity with which this variation travels along the channel. The celerity depends o
the type of wave being considered and may be quite different from the water velocity. For a kinemati
wave, the acceleration and pressure terms in the momentum equation are negligible, so the wav
motion is described principally by the equation of continuity. The name kinematic is thus applicabl
as kinematics refers to the study of motion exclusive of the influence of mass and force; in dynamic.
these quantities are included.

The kinematic wave model is defined by the following equations.
Continuity:

90 04 _
a+§-f1(X, f)

Momentum:
So = Sf

where é(x, 7) is the net lateral inflow per unit length of channel.
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The momentum equation can also be expressed in the form
A=aQP (9.5.3)
For example, Manning’s equation written with So = Sy and R = A/P is

_ 149587 o

Q= np23 (9.54)

which can be solved for A as
np2/3 3/5
A= <1—4'9“\—/‘§*6> o’ (9.5.5)
50 o = [nP?/3/(1.494/55)]°¢ and P = 0.6 in this case.

Equation (9.5.1) contains two dependent variables, A and Q, but A can be eliminated by
differentiating equation (9.5.3):

04 _ upop-1{%L
L - apor1(2) 9.5.6)

and substituting for 0A/0¢ in equation (9.5.1) to give

00 p-1(9Q\ _
"a‘x‘“"O‘BQ <6t)_q

Alternatively, the momentum equation could be expressed as
Q = aA® (9.5.8)
where a and B are defined using Manning’s equation. Using

0 dQoA
2 9.5.9)
the governing equation is
0A dgoA
ot T dadx !
where dQ/dA is determined by differentiating equation (9.5.8):
aQ

= aBAR-1 (9.5.11)

(9.5.10)

and substituting in equation (9.5.10):

04 | apar-124 _

S.12
ot Ox 7 (9.5.12)

The kinematic wave equation (9.5.7) has Q as the dependent variable and the kinematic wave
equation (9.5.12) has A as the dependent variable. First consider equation (9.5.7), by taking the
logarithm of (9.5.3):

InA=lna+BlnQ (9.5.13)

and differentiating

a0
— S5.14
5 (0:5.14)
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This defines the relationship between relative errors dA /A and dQ/Q. For Manning’s equation B<
so that the discharge estimation error would be magnified by the ratio 1/B if A were the depende
variable instead of Q.

Next consider equation (9.5.12); by taking the logarithm of (9.5.8):

Ing=Ina+BlnA

dA _1(do
7 =5(3)

(9.5.1¢

In this case B> 1, so that the discharge estimation error would be decreased by B if A were th
dependent variable instead of Q. In summary, if we use equation (9.5.3) as the form of the momentus
equation, then Q is the dependent variable with equation (9.5.7) being the governing equation; if v
use equation (9.5.8) as the form of the momentum equation, then A is the dependent variable wif
equation (9.5.12) being the governing equation.

9.5.2 U.S. Army Corps of Engineers Kinematic Wave Model for Overland
Flow and Channel Routing

The HEC-1 (HEC-HMS) computer program actually has two forms of the kinematic wave. The fi
is based upon equation (9.5.12) where an explicit finite difference form is used (refer to Figures9.
and 8.9.2):

i1 .
O_A =A§+1 "Aji+1
ot At

6;4 — A¢+1 _Aji
Ox Ax

:Ajz‘-i-l +4]

4 2

1
— 77 +i1
2

Q{:+1
j+1

9Q
ot

Figure 9.5.1 Finite difference forms. (a) HEC-1 “standard form;” () HEC-1 “conservation form.”
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Substituting these finite-difference approximations into equation (9.5.12) gives

1 .
(AT -AL ) +aB (9.5.21)

. ~aB-1 . . . .
AL+ A" [ Al P
2 Ax 2

The only unknown in equation (9.5.21) is A{:i}, S0

- ~B-1
A1 T4
2

. . Al
(A, ~ A + (@1 +d0, ) 5 (9522)

i ; At
1
A=Al aB(A—x>

After computing A{: ii at each grid along a time line going from upstream to downstream (see
Figure 8.9.2), compute the flow using equation (9._5-.'8)/:
0l = a1y’ (9523)
The HEC-1 model uses the above kinematic wave model as long as a stability factor R < 1 (Alley
and Smith, 1987), defined by

- N _ ()
R=_%. [(th+Ai) (A,.) ] for g>0 (9.5.24a)
-1 Al

Otherwise the form of equation (9.5.1) is used, where (see Figure 9.5.1)

00 olfi-ot

P Y (9.5.25)
d ,l:+l__ j
a_“t‘=A____t ~ 4; (9.5.26)
S0
x+1A)c i + i o i q (9'5.27)
Solving for the only unknown Qj,i} yields
‘ . Ax . .
0111 =01 +qbx— (4" - 4)) (9.5.28)
Then solve for A’,I} using equation (9.5.23):
art= (Lo v 9.5.29
i1 = ZQi-(»l (9.5.29)

The initial condition (values of A and Q at time O along the grid, referring to Figure 8.9.2) are
computed assuming uniform flow or nonuniform flow for an initial discharge. The upstream
boundary is the inflow hydrograph from which Q is obtained.

The kinematic wave schemes used in the HEC-1 (HEC-HMS) model are very simplified. Chow,
et al. (1988) presented both linear and nonlinear kinematic wave schemes based upon the equation
(9.5.7) formulation. An example of a more desirable kinematic wave formulation is that by
Woolhiser et al. (1990) presented in the next subsection.
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9.5.3 KINEROS Channel Flow Routing Model

The KINEROS channel routing model uses the equation (9.5.10) form of the kinematic wa
equation (Woolhiser et al., 1990):

0A dQoA
where g(x, ¢) is the net lateral inflow per unit length of channel. The derivatives are approximat
using an implicit scheme in which the spatial and temporal derivatives are, respectively,

i+1 i+1 j j
aA=6A£+1 _A]l jt+1—Ajl

Ax

Jj+1 AJ:+1_AJ:+1 J+1 Aj _A]
d_Qa_Azg 49 il .5 il S +(1-9) a9 —ikt
dA Ox dA Ax dA

A
P *—rc +(1 —9)

Ax

04
ot

1
2

el el
ALT “A§+Afi1—A5+1
At At

i+1 i+1 j j
a_A _Aji +Aji+1 *Aji _Aji+1

or 2At

Substituting equations (9.5.31) and (9.5.33) into (9.5.10), we have
Aj:+l

. o ‘ e . . .
i1~ Al TAT A +<0 Y g A_ﬁl —A§+_ +(1-9) a ™ A—L —4
2At dA Ax dA

Ax
1, i1 d .
=5 @i + 41" + gl + )

The only unknown in this equation is A’l: I}, which must be solved for numerically by use of an
iterative scheme such as the Newton-Raphson method (see Appendix A).

Woolhiser et al. (1990) use the following relationship between channel discharge and cross:
sectional area, which embodies the kinematic wave assumption:

Q=oR""4 (9.5.35)
where R is the hydraulic radius and o0 = 1.495Y2 /n and m = 5/3 for Manning’s equation.

9.5.4 Kinematic Wave Celerity

Kinematic waves result from changes in Q. An increment in flow dQ can be written as

_ 00 o0
dQ = e dx + a—dt

Dividing through by dx and rearranging produces:

00 4129 4o
Ox  dxor  dx
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Equations (9.5.7) and (9.5.37) are identical if
a0

== (9.5.38)

dx 1

== *_—(xBQﬁ‘l (9.5.39)
Differentiating equation (9.5.3) and rearranging gives

Q 1
dA "~ opQoB-1

and by comparing equations (9.5.39) and (9.5.40), it can be ’seen that

dx_é_Q_

= (9.5.41)

dx dQ
where ¢, is the kinematic wave celerity. This implies that an observer moving at a velocity
dx/dt = ¢; with the flow would see the flow rate increasing at a rate of dQ/dx = ¢q. If ¢ = 0, the
observer would see a constant discharge. Equations (9.5.38) and (9.5.42) are the characteristic
equations for a kinematic wave, two ordinary differential equations that are mathematically
equivalent to the governing continuity and momentum equations.
The kinematic wave celerity can also be expressed in terms of the depth y as

140

=% 5.4
5 (9.5.43)

Ck
where dA = Bdy.

Both kinematic and dynamic wave motion are present in natural flood waves. In many cases the
channel slope dominates in the momentum equation; therefore, most of a flood wave moves as
a kinematic wave. Lighthill and Whitham (1955) proved that the velocity of the main part of a
natural flood wave approximates that of a kinematic wave. If the other momentum terms
(6V/6t, V(0V/0x)and (1/ g)ay/ﬁx) are not negligible, then a dynamic wave front exists that
can propagate both upstream and downstream from the main body of the flood wave.

9.6 MUSKINGUM-CUNGE MODEL

Cunge (1969) proposed a variation of the kinematic wave method based upon the Muskingum
method (see Chapter 8). With the grid shown in Figure 9.6.1, the unknown discharge Q”, ﬂ can be
expressed using the Muskingum equation (Q;+1 = C1lj+1 + Co + C3Q;):

AR ST AR e A Yo (9.6.1)
where Q’,I} =Qit1; Q’,:H =Iliy1; Q’,: = [;; and sz:+1 = ;. The Muskingum coefficients are

At —2KX

Y (IS JEWY,

(9.6.2)
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Q{:+1=Ij+1
j+1

i i+1

Figure 9.6.1 Finite-difference grid for the Muskingum—Cunge method.

C, — Ar+2KX
PT2K(A-X) +At
_2K(1-X)-At

O = RA—X) At

Cunge (1969) showed that when K and At are considered constant, equation (9.6.1) is
approximate solution of the kinematic wave. He further demonstrated that equation (9.6.1) can |
considered an approximation of a modified diffusion equation if

K="2o 2
- Ck _dQ/dA

_1 Q
o2 32) os.

where ¢ is the celerity corresponding to Q and B, and B is the width of the water surface. The value
Ax/(dQ/dA) in equation (9.6.5) represents the time propagation of a given discharge along
channel reach of length Ax. Numerical stability requires 0 < X < 1/2. The solution procedur
basically the same as the kinematic wave.

9.7 IMPLICIT DYNAMIC WAVE MODEL

The conservation form of the Saint-Venant equations is used because this form provides th
versatility required to simulate a wide range of flows from gradual long-duration flood wave:
rivers to abrupt waves similar to those caused by a dam failure. The equations are developed froi
equations (9.4.6) and (9.4.25) as follows.

Weighted four-point finite-difference approximations given by equations (9.7.1)-(9.7.3) are us
for dynamic routing with the Saint-Venant equations. The spatial derivatives dQ/0x and 6/ /0x ar
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estimated between adjacent time lines:

20 Q]l:+1_le:+1 j Qj
5)?ze——%x_——ﬂpe) +A1x (9.7.1)
oh hjl+1——hj+1 h'; hjt

P e AR el ey v (0.7.2)

and the time derivatives are:

d(A+40) _(A+A0)"" +(A+A0)TI ~ (A+40)] - (A+40)],
(9.7.3)
ot 2A¢
00 of'+oli-0l-0,,
3= %) (9.7.4)

The nonderivative terms, such as g and A, are estimated between adjacent time lines, using:

j+1 Jj+1 7 7
+q L+’ . e
:641 2q1+1 +(1_9)q zqz+1___eq/i+1+(1_9)qi J (9.7.5)
AREY s A+ A! o
Aze[—’—%ﬁi +(1-9) *2—“ =0A" +(1-0)4 "’ (9.7.6)

where §; and 4; indicate the lateral flow and cross-sectional area averaged over the reach Ax;.
The finite-difference form of the continuity equation is produced by substituting equations
(9.7.1), (9.7.3), and (9.7.5) into (9.4.6):

1 1 .
Ax; -7 Ax1 i

: (9.7.7)
(A+A0) " +(A+A0) I T —(A+A0) - (A+A0)
+ =0
244
Similarly, the momentum equation (9.4.27) is written in finite-difference form as:
o[ +0lli-0l-0,,
ZAtj
2 Aj:+1 Q2 ‘ hj'l-l hj+1
e[(BQ / )x o B / )] AJ+1( z+1Axv i Sf)j+1+(Se)/+1> qux)]+1:|
i i

2 /AN 2 /4 b g . .
+(1_e)[(BQ /A)i+1Axi(BQ/ )1+1 +gAf<h_'_+_Al;l_h_’ +(Sf)i+(Se)lt> _(ﬁqva] =0

(9.7.8)

The four-point finite-difference form of the continuity equation can be further modified by
multiplying equation (9.7.7) by Ax; to obtain

8(Q/11-0i"! —7it ax) + (1 - 0)(Ql,, - 0] - 7jan)

(9.7.9)

Ax; .
+E[(A+A°)j+l (A+A0)x+1 (A+Ao); — (A+Ao);+1]=O
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Similarly, the momentum equation can be modified by multiplying by Ax; to obtain

AX,'

o
2 (0 ol -ol-0l,)

2\ J+1 2\ J+1 . . . , . .
ro{ (BZY — (BT @t i i 1 (50 4 (5] - ()

A i+1 A i

+@=0{(BE) (B 4 [k~ hl+ 5+ B - (oY

where the average values (marked with an ove‘rbar) over a reach are defined as

7 _Bit+B
B="57

-~ A; ;
A = t+;t+1

Ei:Bi'f'zBi-l-l

5 - 2it+0in1

0; 5
Also,
R =24; /B; (9.7.

for use in Manning’s equation. Manning’s equation may be solved for S¢and written in the f
shown below, where the |Q|Q has magnitude Q” and sign positive or negative depending on whe
the flow is downstream or upstream, respectively:

< 720,|0;
(55)i = 2.20882R G

The minor headlosses arising from contraction and expansion of the channel are proportion;
the difference between the squares of the downstream and upstream velocities, with a contracti

expansion loss coefficient K,
_ ). 2 2
L0 (%) -(9) 07,
8AX; i+1 i

The terms having superscript j in equations (9.7.9) and (9.7.10) are known either from ini
conditions or from a solution of the Saint-Venant equations for a previous time line. The term
Ax;, B;, Ke, Cy, and V,, are known and must be specified independently of the solution.
unknown terms are Q4! Q’l:ﬂ, h’:}, FYARS A{:i%B’;“, and B’li} However, all the terms
be expressed as functions of the unknowns Q’,: +1 , Q’,: I} , h’,: + 1, and h’i :[ i, so there are actually f
unknowns. The unknowns are raised to powers other than unity, so equations (9.7.9) and (9.7.10) args
nonlinear equations.

The continuity and momentum equations are considered at each of the N-1 rectangular g

shown in Figure 9.7.1 between the upstream boundary at i = 1 and the downstream boundary.
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ij+1 i+1,j+1
G+ e
Ay t—
; ) I
1,1‘_ i+1,j
L Node S

Downstream boundary

(i-1) i
nitial condition time line

model formulation.

.1.1 Consider a river segment with the surface area of 10 km?.
“or a given flood event, the measured time variation of inflow rate
called inflow hydrograph) at the upstream section of the river
egment and the outflow hydrograph at the downstream section are
hown in Figure P9.1.1. Assume that the initial storage of water in
he river segment is 15 mm in depth.

(a) Determine the time at which the change in storage of the
river segment is increasing, decreasing, and at its
maximum.

" (b) Calculate the storage change (in mm) in the river segment
during the time periods of [0, 4 hr], and [6, 8 hr].

(c) Determine the amount of water (in mm) that is ‘lost’ or
‘gained’ in the river segment over the time period of 12
hours. .

. (d) Whatis the storage volume (in mm) at the end of the twelfth

hour?

(i+1) (i+2)

N-3)(N-2)(N-1) N Distance:

gure 9.7.1 The x-£solution plane. The finite-difference forms of the Saint—Venant equations are solved at a discrete number of points
values of the independent variables x and ¢) arranged to form the rectangular grid shown. Lines parallel to the time axis represent
ocations along the channel, and those parallel to the distance axis represent times (from Fread (1974)).

i = N.This yields 2N-2 equations. There are two unknowns at each of the N grid points (Q and A), so
there are 2V unknowns in all. The two additional equations required to complete the solution are
supplied by the upstream and downstream boundary conditions. The upstream boundary condition is
usually specified as a known inflow hydrograph, while the downstream boundary condition can be
specified as a known stage hydrograph, a known discharge hydrograph, or a known relationship
between stage and discharge, such as a rating curve. The U.S. National Weather Service FLDWAV
model (hsp.nws.noaa.gov/oh/hrl/rvimech) uses the above to describe the implicit dynamic wave

PROBLEMS

T o

T 50 - - = -Outflow

2 a0 AN

% % / \ O\ _

B A~ ~—"

T N

A ~_
0 1 2 3 4 § 6 7 8 9 10 11 12

Time (hr)
Figure P9.1.1

9.1.2 Consider ariver segment with the surface area of 5 km?. For
a given flood event, the measured time variation of inflow rate
(called inflow hydrograph, in m®/sec) at the upstream section of
the river segment and the outflow hydrograph at the downstream
section are shown in Figure P9.1.1. Assume that the initial storage
of water in the river segment is 10 mm in depth.
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