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CHAPTER 24
Finite Difference:
Parabolic Equations

The previous chapter dealt with steady-state PDEs. We now turn to the parabolic equa-
tions that are employed to characterize time-variable problems. In the latter part of this -
chapter, we will illustiate how this is done in two spatial dimensions for the heated
plate. Before doing this, we will first show how the simpler one-dimensional case is
approached.

THE HEAT CONDUCTION EQUATION

In a similar fashion to the derivation of the Laplace equation (Eq. 23.6), conservation of
heat can be used to develop a heat balance for the differential element in the long, thin
insulated rod shown in Fig, 24.1. However, rather than examine the steady-state case,
the present balance also considers the amount of heat stored in the element over a unit
time period Ar. Thus, the balance is in the form, inputs — outputs = storage, or

g Ay Az At~ g(x + Ax) AyAz At = AxAyAz pCAT

Dividing by the volume of the element (=AxAyAz) and At gives

90 =g +Ax) AT
Ax TPV AL
Taking the limit yields

J ar
L
dx at

Figure 24.1
A thin rod, insulated at all.
points except at its ends.
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Figure 24.2

A grid used for the finite-
difference solution of parabolic
PDEs in two independent -
variables such as the heat-
conduction equation. Note
how, in contrast to Fig. 23.3,
this grid is open-ended in the
temporal dimension.
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(24.1) .

which is the heat-conduction equation.

Just as with elliptic PDEs, parabolic equations can be solved by substituting finite
divided differences for the partial derivatives. However, in contrast to elliptic PDEs,
we must now consider changes in time as well as in space. Whereas elliptic equations
were bounded in all relevant dimensions, parabolic PDEs are temporally open-ended
(Fig. 24.2). Because of their time-variable nature, solutions to these equations involve
a number of new issues, notably stability. This, as well as other aspects of parabolic
PDESs, will be examined in the following sections as we present two fundamental solution
approaches —explicit and implicit schemes.

EXPLICIT METHODS

The heat-conduction equation requires approximations for the second derivative in space
and the fiist derivative in time. The former is represented in the same fashion as for the
Laplace equation by a centered finite divided difference:

FT Ty — 2T + T,

F i 4.2

which has an error (recall Fig.. 17.3) of O[(Ax)}?]. Notice the slight change in notation
that superscripts are used to denote time, This is done so that a second subscript can be
used to designate a second spatial dimension when the approach is expanded to the two-
dimensional case.
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Figure 24.3
A computational molecule for
the explicit form.

EXAMPLE 24.1

|
F .

A forward finite divided difference is used to approximaie the time derivative

gr 1M -1

E = MAI (24.3)
which has an error (recall Fig. 17.1) of O(A®). _

Substituting Eqs. (24.2) and (24.3) into Eq. (24.1) vields

Tr'I-H - 2Tif + Titl TiH'l " Tr't
= (24.4)
(Ax)? At

which can be solved for

T =T+ NMTL - 2T T (24.5)

where A = kAt/(Ax)?, .

This equation can be written for all the interior nodes on the rod. It then provides
an explicit means to compute values at each node for a future time based on the present
values at the node and its neighbors. In this sense, it is very similar to Buler’s method for
solving systems of ODEs. That is, if we know the temperature distribution as a function
of position at ¢t = 0, we can compute the distribution at At based on Eq. (24.5).

A computational molecule for the explicit method is depicted in Fig. 24.3, showing
the nodes that constitute the spatial and temporal approximations. This molecule can be
contrasted with others in this chapter to illustrate the differences between approaches,

Expilicit Solution of the One-Dimensional Heat-Conduction Equation

Problem Statement: Use the explicit method to solve for the temperature distribution of a
long, thin rod with a length of 10 cm and the following values: k' = 0.49 cal/(s-cm-°C),
Ax = 2 cm, and Afr = 0.1 5. At ¢t = 0, the temperature of the rod is zero and the
boundary conditions are fixed for all times at T(0) = 100°C and T(10} = 50°C. Note
that the rod is aluminum with € =0.2174 cal/(g-°C) and p =2.7 g/om?. Therefore, k
= 0.49/(2.7-0.2174) = 0.835 cm?/s and A = 0.835(0.1)/(2)* = 0.020875.




Solution: Applying Eq. (24.5) gives the following value at ¢ = 0.1 s for the node at x =
2 cm: '

T) =0 + 0.020875[0 — 2(0) + 100] = 2.0875

At the other interior points, x = 4, 6, and 8 cm, the results are
TS =0 + 0.020875{0 — 2(0) + 0] = 0
T =0 +0.020875[0 —2(0) + 0] =0
TL =0 + 0.020875[50 — 2(0) + 0] = 1.0438

At ¢ = 0.2 s, the values at the four interior nodes are computed as
T? = 2.0875 + 0.020875[0 — 2(2.0875) + 100] = 4.0878
T2 =0 + 0.020875 [0 — 2(0) + 2.0875] = 0.043577
T2 =0 + 0.020875[1.0438 - 2(0) + 0] = 0.021788
T2 = 1.0438 -+ 0.020875[50 — 2(1.0438) + 0] = 2.0439

The computation is continued, and the results at 3-s intervals are depicted in Fig. 24.4.
The general rise in temperature with time indicates that the computation captures the
diffusion of heat from the boundaries into the bar.

Figure 24.4
Temperature distribution in a long, thin rod as computed with the explicit method described
in Sec. 24.2

24.2.1 Convergence and Stability

Convergence means that as Ax and At approach zero, the results of the finite-difference
technique approach the true solution. Stability means that errors at any stage of the
computation are not amplified but are attenuated as the computation progresses. It can
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Figure 24.5
An illustration of instability.
Solution of Example 24.1 but
with A = 0.735,
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be shown (Carnahan et al., 1969) that the explicit method is both convergent and stable
it A = 1/2. Another way to formulate this criterion is

1 Ax?
2 k
In addition, it should be noted that setting A = 1/2 could result in a solution in
which errors do not grow but oscillate. Setting A = 1/4 ensures that the solution will
not oscillate. It is also known that setting A = 1/6 tends to minimize truncation error
{Carnahan et al., 1969).

Figure 24.5 is an example of instability caused by violating Eq. (24.6). This plot is
for the same case as in Example 24.1 but with A = 0.735 which is considerably greater
than 0.5. As in Fig. 24.5, the solution undergoes progressively increasing oscillations.
This situation will continue to deteriorate as the computation continues.

Although satisfaction of Eq. (24.6) will alleviate the instabilities of the sort manj-
fested in Fig. 24.5, it also places a strong limitation on the explicit method. For example,
suppose that Ax is halved to improve the approximation of the spatial second derivative.
According to Eq. (24.6), the time step must be quartered to maintain convergence and
stability. Thus, to perform comparable computations, the time steps must be increased
by a factor of 4. Furthermore, the computation for each of these time steps will take
twice as long because halving Ax doubles the tofal number of nodes for which equations
must be written. Consequently, for the one-dimensional case, halving Ax results in an
eightfold increase in the number of calculations. Thus, the computational burden may
be large to attain acceptable accuracy. As will be described shortly, other techniques are
available that do not suffer from such severe limitations.

Ar = (24.6)

24.2.2 Derivative Boundary Conditions

As was the case for elliptic PDEs (recall Sec. 23.3.1), derivative boundary conditions
can be readily incorporated into parabolic equations. For a one-dimensional rod, this
necessitates adding two equations to characterize the heat balance at the end nodes. For
example, the node at the left end (i = 0) would be represented by '

Tt =Ty + NT! =218 + 1)

Thus, an imaginary point is introduced at ; = —1 (recall Fig. 23.8). However, as with
the elliptic case, this point provides a vehicle for incorporating the derivative boundary
condition into the analysis. Problem 24.1 at the end of the chapter deals with this exercise.

A SIMPLE IMPLICIT METHOD

As noted previously, explicit finite-difference formulations have problems related to
stability. In addition, as depicted in Fig. 24.6, they exclude information that has a
bearing on the solution. Implicit methods overcome both these difficulties at the expense
of somewhat more complicated algorithms.



Figure 24.6

Representation of the effect

of other nodes on the finite-
difference approximation at
node (i, I} using an explicit
finite-difference scheme. The
shaded nodes have an influ-
ence on (i, /) whereas the
unshaded nodes, which in real-
ty affect (¢, [), are excluded.

The fundamental difference between explicit and implicit approximations is depicted
in Fig. 24.7. For the explicit form, we approximate the spatial derivative at time level {
(Fig. 24.7a). Recall that when we substituted this approximation into the partial differ-
ential equation, we obtained a difference equation (24.4) with a single unknown T/*!,
Thus, we can solve “explicitly” for this unknown as in Eq. (24.5).

In impticit methods, the spatial derivative is approximated at an advanced time level
[ + 1. For example, the second derivative would be approximated by (Fig. 24.75b)

g _ Tt -2 v 1
P (Ax)?

(24.7)

which is second-order accurate. When this relationship is substituted into the original
PDE, the resulting difference-equation contains several unknowns. Thus, it cannot be
solved explicitly by simple algebraic rearrangement as was done in going from Eq. (24.4)
to (24.5). Instead, the entire system of equations must be solved simultaneously. This is
possible because, along with the boundary conditions, the implicit formulations result in
a set of linear algebraic equations with the same number of unknowns. Thus, the method
reduces to the solution of a set of simultanecus equations at each point in time.

igure 24.7

omputational molecules dem-
nstrating the fundamentat
ffferences between (4] expli-
it and (&) implicit methods.
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EXAMPLE 24.2

To illustrate how this is done, substitute Eqs. (24.3) and (24.7) into Eq. 24.1) to
give

T!li-ll _ 2Tif+l I I—vr_ij-ll _ Tii-{-l _ Tll

k (Ax)? T At
which can be expressed as
SATH (20T - AT = T (24.8)

where A = & A#/{Ax)®. This equation applies to all but the first and the last interior
nodes which must be modified to reflect the boundary conditions. For the case where
the temperature levels at the ends of the rod are given, the boundary condition at the Ieft
end of the rod (i = 0) can be expressed as

Té“ e fo(f”l) _(24.9)

where fo(z*") is-a function describing how the boundary temperature changes with time.
Substituting Eq. (24.9) into Eq. (24.8) gives the difference equation for the first interior
node (i = 1):

(I + 20T = AT = T 4+ afp(e™Y (24.10)
Similarly, for the last interior node (i = m),

SATH (14 20T = 7L 4 M) (24.11)

il |

where fo1(t") describes the specified temperature changes at the right end of the rod
(i=m+ 1) _ |
When Egs. (24.8), (24.10), and (24.11) are written for all the interior nodes, the
resulting set of m linear algebraic equations has m unknowns. In addition, the method
has the added bonus that the system is tridiagonal, Thus, we can utilize the extremely
efficient solution algorithms (recall Sec. 9.6) that are available for tridiagonal systems.

Simple Impilicit Solution of the One-Dimensional Heat-Conduction Equation

Problem Statement: Use the simple implicit finite-difference approximation to solve the
same problem as Example 24.1.

Solution: For the rod from Example 24.1, A =0.020875. Therefore, at ¢ =0, Eq. (24.10)
can be written for the first interior node as

1.04175 T} ~ 0.020875 T, = 0 + 0.020875(100)
ar
1.04175 7} ~ 0.020875T, = 2.0875

In a similar fashion, Eqs. (24.8) and (24.11) can be applied to the other interior nodes.
This leads to the following set of simultaneous equations:

104175 —0.020875 Ty 2.0875
—0.020875  1.04175  —0.020875 nl_jo
—0.020875  1.04175  —0.020875| | 73 0

—0.020875 1.04175 T 1.04375
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which can be solved for the temperature at £ = 0.1 s

T| = 2.0047
75 = 0.0406
T3 = 0.0209
T) = 1.0023

Notice how, in contrast to Example 24.1, all the points have changed from the initial
condition during the first time step.
In order to solve for the temperatures at ¢ = 0.2, the right-hand-side vector must be

modified to account for the results of the first step as in

4.09215

0.04059

0.02090

2.04609

The simultaneous equations can then be solved for the temperatures at ¢ =0.2s:

72 = 3.9305

72 = 0.1190
72 = 0.0618
T3 = 1.9653

Although the implicit method described is stable and convergent, it has the defect
that the temporal difference approximation is first-order accurate whereas the spatial
difference approximation is second-order accurate (Fig. 24.8). In the next section we
present an alternative implicit method that remedies the situation.

igure 24.8
 computational molecuie for
e simple implicit method.




24.4 THE CRANK-NICOLSON METHOD

The Crank-Nicolson method provides an alternative implicit scheme that is second-order
accurate in both space and time. To provide this accuracy, difference approximations are
developed at the midpoint of the time increment (Fig. 24.9). To do this, the temporal
first derivative can be approximated at £'+Y2 by ‘

T _ Lt -1 (24.12)
ot © At ' )

The second derivative in space can be determined at the midpoint by averaging the
difference approximations at the beginning (¢') and at the end (¢'*1) of the time increment

ST _ |1l —ort + 1l Thl—arit 4 oph

. 24,13
at 2L . (AP * (Ax)* @

Substituting Eqs. (24.12) and (24.13) into Eq. (24.1) and collecting terms gives
—ATH 4200 + OTP - AT = ATH, + 200 = 0T + AT (24.14)

where A = k£ A/(Ax)?. As was the case with the simple implicit approach, boundary
conditions of Tg"' = fo(+"*') and T = Far1(f™Y) can be prescribed to derive versions

of Eq. (24.14) for the first and the last intetior nodes. For the first interior node
201+ NTM = AT = Afeh + 20 - NI+ AT + Aol (24.15)

and for the last interior node

=ALE + 200 + NTH =

= Ht

,(24.16)
M1t + 200 = NTh, + AL+ Moa(t™h

Although Eqs.' (24.14) through (24.16) are slightly more complicated than Eqgs.
(24.8), (24.10), and (24.11), they are also tridiagonal and, therefore, efficient to solve.

-

Figure 24.9
A computational molecule for the Crank-Nicolson method.
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EXAMPLE 24.3

Crank-Nicolson Solution to the One-Dimensional Heat-Conduiction Equation

Problem Staterment: Use the Crank-Nicolson method to solve the same problem as in
Examples 24.1 and 24.2.

Solution: Equations (24, i4) through (24.16) can be employed to generate the following
tridiagonal set of equations:

201475 —0.020875 N (4175
—0.020875  2.01475  —0.020875 T 0

~0.020875  2.01475 —0.020875| | 73 0
-0,020875  2.01475 75 2.0875

which can be solved for the temperatures at ¢ = 0.1 s

T} = 2.0450
75 = 0.0210
74 = 0.0107
T = 1.0225

In order to solve for the temperatures at + = 0.2 s, the right-hand-side vector must
be changed to

8.1801
0.0841
0.0427
. 4.0901 7
The simultaneous equations can then be solved for
72 = 4.0073
T2 = 0.0826
% = 0.0422
T2 = 2.0036

24.4.1 Comparisoh of One-Dimensional Methods

Equation (24.1) cati be solved analytically. For example, a solution is available for the
case where the rod’s temperature is initially at zero. At ¢ =0, the boundary condition at
x = L is instantaneously mmeased to a constant level of T while T(0) is held at zero.
For this case, the temperature can be computed by (Jenson and Jeffreys, 1977)

=| x 2 nx —nt s
=F| 2 + > =(=1) sin |5~ e
Tr=T I 2 mT( 1)* sin 3 exp( 12 )] (24.17)

w
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EXAMPLE 24.4
|

TABLE 24,1

where L is the total length of the rod. This equation can be employed to compute the
evolution of the temperature distribution for each boundary condition. Then, the total
solution can be determined by superposition,

Comparison of Analytical and Numerical Solutions

Problem Statement: Compare the analytical solution from Eq. (24.17) with numer|-

cal results obtained with the explicit, simple implicit, and Crank-Nicolson techniques.
Perform the comparison for the rod employed in Examples 24.1, 24.2, and 24.3.

Sofution: Recall from the previous examples that £ =0.835 ecm¥s, I =10 cm, and
Ax =2 cm. For this case, Eq. (24.17) can be used to predict that the temperature at x
=2 cm and 7 =10 s would equal 64.8018. Table 24.1 presents numerical predictions
of 7(2, 10). Notice that a range of time steps are employed. These results indicate a
number of properties of the numerical methods. First, it can be seen that the explicit
method is unstable for high values of A. This instability is not manifested by either
implicit approach. Second, the Crank-Nicolson method converges more rapidly as A is
decreased and provides moderately accurate results even when A is relatively high, These
outcomes are as expected because Crank-Nicolson is second-order accurate with respect
to both independent variables. Finally, notice that as A decreases, the methods seem to
be converging on a value of 64.73 that is different than the analytical result of 64.80.
This should not be sutprising because a fixed value of Ax =2 is used to characterize
the x dimension. If both Ax and A¢ were decreased as A was decreased (that is, more
spatial segments were used}, the numerical solution would more closely approach the
analytical result.

Comparison of three methods of solving a parabolic PDE:
the heated rod. The results shown are for temperature at
t=10sat x = 2 cm, for the rod from Example 24.1 through
24.3. Note that the analytical solution is T{2,10) = 64.8018.

Ar A Explict  Implicit  Crank-iicalson
10 2.0875 208.75 53.01 79.77

5 1.04375 —9.13 58.49 64.79

2 04175 67.12 62.22 64.87

1 0.20875 65.91 63.49 64.77

0.5 0.104375 65.33 64.12 64.74

0.2 0.04175 64.97 64.49 64.73

As indicated by the previous example, the Crank-Nicolson method is the preferred
numerical method for solving parabolic PDEs in one spatial dimension. Its advantages
become even more pronounced for more complicated applications such as those involving
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unequally spaced meshes. Such nonuniform spacing is often advantageous where we have
foreknowledge that the solution varies rapidly in local portions of the system. Further
discussion of such applications and the Crank-Nicolson method in general can be found
elsewhere (Ferziger, 1981; Lapidus and Pinder, 1982).

PARABOLIC EQUATIONS IN TWO SPATIAL DIMENSIONS

The heat-conduction equation can be applied to more than one spatial dimension. For
two dimensions, its form is
ar 2 2

( T 8 T)

2k L (24.18)

ot a2 N
One application of this equation is to model the temperature distribution on the face of
a heated plate. However, rather than characterizing its steady-state distribution, as was
done in Chap. 23, Eq. (24.18) provides a means to compute the plate’s temperature
distribution as it changes in time.

24.5.1 Standard Explicit and Implicit Schemes

An explicit solution can be obtained by substituting finite-difference approximations
of the form of Hgs. (24.2) and (24.3) into Eq. (24.18). However, as with the one-
dimensional case, this approach is limited by a stringent stability criterion. For the two-
dimensional case, the criterion is (Davis, 1984)

1 (AR +(ay)?
8 k

Thus, for a uniform grid (Ax = Ay), A = kAr/(Ax)? must be less than or equal to 1/4.
Consequently, halving the step size results in a fourfold increase in the number of nodes
and a 16-fold increase in computational effort.

As was the case with one-dimensional systems, implicit techniques offer alternatives
that guarantee stability. However, the direct application of implicit methods such as
the Crank-Nicolson technique leads to the solution of m X n simultaneous equations.
Additionally, when written for two or three spatial dimensions, these equations lose the
valuable property of being tridiagonal. Thus, matrix storage and computation time can
become exorbitantly large. The method described in the next section offers one way
around this dilemma,

Ar =

24.5.2 The A.D.l. Scheme

The aiternating-direction implicit ot A.D.I. scheme provides a means for solving
parabolic equations in two spatial dimensions using tridiagonal matrices. To do this,
each time increment is executed in two steps (Fig. 24.10). For the first step, Eq. (24.18)
is approximated by
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Figure 24.10 :
The two half-steps used in implementing the alternating-direction implicit scheme for solving
parabofic equations in two spatial dimensions,

12l { ! ! 1+1/2 I+1/2 I+172
L, 7T oy a2 T - T - 205 + 1l (24.190)

A2 (Ax)? (Ay)?

Thus, the approximation of 9*7/x” is written explicitly —that is, at the base point #
where values of temperature are known. Consequently, only the three temperature terms
in the approximation of *7/dy’ are unknown. For the case of a square grid (Ay = Ax),
this equation can be expressed as

“AT 4 21+ DTV — TR <

] ; ; (24.195)
AT, + 200 = NT!, + Tl

=-1,j

which, when written for the system, results in a tridiagonal set of simultaneous equations.
For the second step from ¢*12 10 1™*1 Eq. (24.18) is approximated by

! 14172
szl - T,.j_l — jlill.j _ 2T'_.'j_l + TJ.':-IIJ_ T,‘[.JJ‘IJ:? o 2;,}.'.1;1.'2 + T{lujlllz (24.20)
At2 (Ax)? Ay’

In contiast to Eq. (24.19a), the approximation of #277/9x% is now implicit. Thus, the bias
introduced by Eq. (24.19a) will be partially corrected. For a square grid, Eq. (24.20)
c¢an be written as

=ATH 200 + Tt -y =

J
AT{EEE 4200 = NTEY 4 AT Y2

(24.21)

Again, when written for a two-dimensional grid, the equation results in a tridiagonal
system (Fig. 24.11). As in the following example, this leads to an cfficient numerical -
solution.

e e 231

g
3
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EXAMPLE 24.5

A.D.l. method

Problem Statement: Use the A.D.1. method to solve for the temperature of the plate in
Examples 23.1 through 23.3. At ¢ = 0 assume that the temperature of the plate is zero
and the boundary temperatures are instantancously brought to the levels shown in Fig.
23.4. Employ a time step of 10 s. Recall from Example 24.1, that the coefficient of
thermal diffusivity for aluminum is ¥ = 0.835 cm%s.

Solution: A value of Ax = 10 cm was employed to characterize the 40 X 40 c¢m plate
from Examples 23.1 through 23.3, Therefore, A = 0.835(10y/(10)% = 0.0835. For the
first step to ¢ = 5 (Fig. 24.11a), Eq. (24.195) is applied to nodes (1,1), (1,2}, and (1,3)
to yield the following tridiagonal equations

2.167 —0.0835 0 Ty 6.2625
—0.0835  2.167 —0.0835!1{ T\2}=1 6.2625
0 -0.0835  2.167 Ti3 14.6125

_ which can be solved for

T, = 3.0160 T2 = 3.2708 T3 = 6.8692

In a similar fashion, tridiagonal equations can be developed and solved for
Ty = 0.1274 T2 = 0.2900 Ty3 = 4.1291

and |

T3‘; = 2.0181 Tg‘g = 2.2477 T3_3 = 6,0256

Figure 24.11

The AD.l. method only results in tridiagonal equations, if it is applied along the dimension
that is implicit. Thus, on the first step {a), it is applied along the y dimension and, on the
second step (b). along the x dimension, These “alternating directions™ are the root of the
method’s name.
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For the second Step to ¢ =10 (Fig. 24.114), Eq. (24.21) is applied to nodes (1,1,
(2,1), and (3,1) to yield

2,167 -0.0835 ¢ T, 12.0639
—0.0835 2,167 —0.0835| { ot =1{ 0.2577
0 —0.0835 2.167 T3, 8.0619

which can be solved for
Tyt = 5.5855 Ty, = 0.4782 T3, = 3.7388
Tridiagonal equations for the other rows can he developed and solved for

T2 = 61683 Ty, =08238 7y, = 42350

) T1.3 = 131120 T2_3 = 83207 T3.3 = 11.3606

The computation can be repeated, and the results for ¢+ = 100, 200, and 300 s are
depicted in Fig. 24.124 through ¢. As expected, the temperature of the plate rises. After
a sufficient time elapses, the lemperature will approach the steady-state distribution of
Fig, 23.5.

The A.D.I. method is but one of a group of techniques called splitting methods. Some
of these represent efforts to circoinvent shortcomings of A.D.1, For example, it is difficult
to directly extend the A.D.I. method to three dimensions by using approximations at /
+ 1/3 and I + 2/3. Discussion of other splitting methods as well as more information
on A.D.1. can be found elsewhere (Ferziger, 1981; Lapidus and Pinder, 1982).

(@) t=100¢ : - (B) +=2003% {c) £=3005

Figure 24.12
Solution for the heated plate from Example 24.4 at {a) ¢ = 100 s, {B) t = 200 s, and

{c] t = 300 s.
- -



PROBLEMS

Hand Calculations

24,1 Repeat Example 24,1 but for the case where the rod is
initially at 100 °C and the derivative at x = 0 is equal to
1 and at x = 10 is equal to 0.

24.2 Repeat Example 24,1 but for a time step of Az = 0.05 s,
Compute results to ¢ = 0.2 and compare with those in
Bxample 24.1. ’

24.3 Repeat Example 24.2 but for the case where the derivative
at x = 10 is equal to zero.

24.4 Repeat Example 24.3 but for Ax = 2.5 ¢m,
24.5 Repeat Example 24.5 but for the plate in Fig, P23.3.

24.6 The advection-diffusion equation is used to compute the
distribution of concentration along the length of a rectan-
gular chemical reactor (see Case Study 26.1),

dc Fe de

=D~ U= ke

I a2 x
where ¢ is concentration (mg/m?), ¢ =time (min), D is
a diffusion coefficient (m%min), x is distance along the
tank’s longitudinal axis (m) where x = 0 at the tank’s

inlet, U is velocity in the x direction {m/min), and k is
a reaction rate (min™") whereby the chemical decays (o
another form. Develop an explicit scheme to solve this
equation numerically.

Computer-Related Problems

24.7 Develop a user-friendly computer program for the simple
explicit method from Sec. 24.2. Test it by duplicating
Example 24.1.

24.8 Modify the program in Prob. 24.7 so that it employs
derivative boundary conditions.

24.9 Develop a user-friendly computer program to implement
the simple implicit scheme from Sec. 24.3, Test it by
duplicating Example 24.2.

24.10 Develop a user-friendly coinputer program to implement
the Crank-Nicolson method from Sec. 24.4. Test it by
duplicating Example 24.3.

24.11 Develop a user-friendly computer program for the A.D.L.
method described in Sec. 24.5. Test it by duplicating
Example 24.5.
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