## Example 7.1

Given an initial infiltration capacity  $f_0$  of 2.9 in./hr and a time constant k of 0.28 hr<sup>-1</sup>, derive an infiltration capacity versus time curve if the ultimate infiltration capacity is 0.50 in./hr. For the first 8 hours, estimate the total volume of water infiltrated in inches over the watershed.

## Solution:

Using Horton's equation (Eq. 7.1), values of infiltration can be computed for various times. The equation is:

$$f = f_c + (f_0 - f_c)e^{-kt}$$

2. Substituting the appropriate values into the equation yields:

$$f = 0.50 + (2.9 - 0.50)e^{-0.28t}$$

3. For the times shown in Table 7.3, values of f are computed and entered into the table. Using a spreadsheet graphics package, the curve of Fig. 7.8 is derived.

| TABLE 7.3 Time (hr) | Calculations for Example 7.1 |              |                          |
|---------------------|------------------------------|--------------|--------------------------|
|                     | Infiltration<br>(in./hr)     | Time<br>(hr) | Infiltration<br>(in./hr) |
| 0                   | 2.90                         | 5.00         | 1.09                     |
| 0.10                | 2.83                         | 6.00         | 0.95                     |
| 0.25                | 2.74                         | 7.00         | 0.84                     |
| 0.50                | 2.59                         | 8.00         | 0.76                     |
| 1.00                | 2.31                         | 9.00         | 0.69                     |
| 2.00                | 1.87                         | 10.00        | 0.65                     |
| 3.00                | 1.54                         | 15.00        | 0.54                     |
| 4.00                | 1.28                         | 20.00        | 0.51                     |



FIGURE 7.8

Infiltration curve for Example 7.1.

To find the volume of water infiltrated during the first 8 hours, Eq. 7.1 can be integrated over the range of 0-8:

$$V = \int [0.50 + (2.9 - 0.50)e^{-0.28t}]dt$$
$$V = [0.5t + (2.40 - 0.28)e^{-0.28t}]$$

$$V = [0.5t + (2.40 - 0.28)e^{-0.28t}]_0^8$$

 $V = 11.84 \, \text{in}$ .

The volume over the watershed is thus 11.84 in.