INFILTRATION MODELS

Infiltration is the process of vertical movement of water into a soil from rainfall, snowmelt,
or irrigation. Infiltration of water plays a key role in surface runoff, ground water recharge,
evapotranspiration, and transport of chemicals into the subsurface. Models to characterize
infiltration for field applications usually employ simplified concepts that predict the infiltra-
tion rate assuming surface ponding begins when the surface application rate exceeds the soil

infiltration rate. Empirical, physically based, and physical models have all been developed for
the infiltration process. A more detailed review of infiltration can be found in Rawls et al.
(1993).

Richards Equation, Eq. (9.8), is the physically based infiltration equation used for de-
scribing water flows in soils. Philip (1957) solved the equation analytically for the condition
of excess water at the surface and given characteristic curves. Their coefficients can be pre-
dicted in advance from soil properties and do not have to be fitted to field data. However, the
more difficult case where the rainfall rate is less than the infiltration capacity cannot be han-
dled by Philip's equation. Another limitation is that it does not hold valid for extended time
periods. Swartzendruber (1987) presented a solution to Richards equation that holds for both
small, intermediate and large times.

One of the most interesting and useful approaches to solving the governing equation
for infiltration was originally advanced by Green and Ampt (1911). In this method, water is
assumed to move into dry soil as a sharp wetting front that separates the wetted and unwetted
zones. At the location of the front, the average capillary suction head y = Yy, is used to
represent the characteristic curve. The moisture content profile at the moment of surface satu-
ration is shown in Figure 9.6a. The area above the moisture profile is the amount of infiltra-
tion up to surface saturation F and is represented by the shaded area of depth L in Figure
9.6a. Thus, F = (6,— 6)L = ML, where 0,is the initial moisture content, 6, is the saturated
moisture content, and M, = 6, 6, the initial moisture deficit.

Darcy's law is then applied as an approximation to the saturated conditions between the
soil surface and the wetting front, as indicated in Figure 9.6b (Bedient and Huber, 1992).

The volume of infiltration down to the depth L is given by

F=1(6,-0,) = LM, (9.10)
Neglecting the depth of ponding at the surface, the original form of the Green-Ampt equation

f=K1-(6, -6, )y /F]

9.11)
=K [1-Mpp ,/F]

Because 1 is negative, Eq. (9.11) indicates that the infiltration rate is a value greater than
the saturated hydraulic conductivity, as long as there is sufficient water at the surface for in-
filtration, as sketched in curves C and D of Figure 9.6c. Functionally, the infiltration rate
decreases as the cumulative infiltration increases.



There are two extreme cases which should be considered. For large values of moisture
content, dy /36 is approximately zero and the continuity equation becomes

QQ _ 0K(6)
ot 0z

(9.9)

Equation (9.9) leads to the kinematic theory of modeling the unsaturated flow, where capil-
lary pressure gradients are neglected. The theory is also applicable if 1 = CONSTANT within
the profile. Thus, Darcy's law predicts that flow is downward under a unit gradient. The sec-
ond extreme case occurs when capillary forces completely dominate gravitational forces, re-
sulting in a nonlinear diffusion equation. This latter form is useful for modeling evaporation

processes.
To summarize the properties of the unsaturated zone as compared to the saturated zone,
Freeze and Cherry (1979) state that:

For the unsaturated zone (vadose zone):

1. It occurs above the water table and above the capillary fringe.

0. The soil pores are only partially filled with water; the moisture content 6 is
less than the porosity n.

3. The fluid pressure P is less than atmospheric; the pressure head v is less than
zZero.

4. The hydraulic head & must be measured with a tensiometer.

5. The hydraulic conductivity K and the moisture content 8 are both functions of
the pressure head 1.

For the saturated zone:
1. It occurs below the water table.

2. The soil pores are filled with water; and the moisture content 6 equals the po-
rosity n.

3. The fluid pressure P is greater than atmospheric, so the pressure head
(measured as gauge pressure) is greater than zero.

4. The hydraulic head /# must be measured with a piezometer.

5. The hydraulic conductivity K is not a function of the pressure head .

Finally, more details on the unsaturated zone can be found in Fetter (1999), Rawls et
al. (1993), Charbeneau and Danel (1993) and Guyman (1994).



The rainfall intensity, i, is often less than the potential infiltration rate given by Eq.
(9.11), in which case f = i. Let the corresponding volume of infiltration be F,. With f =i,
Eq. (9.11) can then be solved for F, the volume of infiltration at the time of surface satura-
tion (¢,, the time at which Eq. (9.11) becomes valid),

by =10, =09 V1 - ilK 1= Mgy /(1 ~ilK ) (9.12)

We require i >K, in Eq. (9.12) and remember that v, is negative. The Green-Ampt infiltra-
tion prediction is thus the following:

If i K, then f =i (curve A in Figure 9.6¢)

If i > K, then f=iuntil F = it, = F, (Eq. (9.12)

After the surface is saturated, the following is used, f= K[1 — M, y/F] (Eq. (9.11)) for
i>K,andf=ifori K.

The combined process is sketched in curves B and C of Figure 9.6c. As long as the
rainfall intensity is greater than the saturated hydraulic conductivity, the infiltration rate as-
ymptotically approaches K|, as a limiting lower value. Mein and Larson (1973) found excel-
lent agreement when using the Green-Ampt method, numerical solutions of Richard's equa-
tion, and experimental soils data. If the rainfall rate starts above K|, drops below it, and then
rises back above it during the infiltration computation, the use of Green-Ampt becomes
more complicated, making it necessary to redistribute the moisture in the soil column rather
than maintaining the assumption of saturation from the surface down to the wetting front
shown in Figure 9.6b. The use of the Green-Ampt procedures for unsteady rainfall sequences
is illustrated by Skaggs and Khaleel (1982).
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Figure 9.6 Moisture and infiltration relations. (@) Moisture profile at moment of
surface saturation. (b) Moisture profile at later time. (c ) Infiltration behavior under
rainfall. Source: Mein and Larson, 1973.



TABLE 9.1 Green-Ampt infiltration parameters for various soil texture classes

——

Effective Wetting Front Soil  Hydraulic
Porosity Porosity SuctionHead  Conductivity =~ Sample

Soil Class n e v (cm) K(cm/hr) Size

Sand 0437 0417 4.95 11.78 762
(0.374-0.500) (0.354-0.480) (0.97-25.36)

Loamy sand 0437 0.401 6.13 299 338
(0.363-0.508) (0.329-0.473) (1.35-27.94)

Sandy loam 0.453 0412 11.01 1.09 666
(0.351-0.555) (0.283-0.541) (2.67-45.47)

Loam 0.463 0434 8.89 0.34 383
(0.375-0.551) (0.334-0.534) (1.33-59.38)

Siit loam 0.501 0.486 16.68 065 1206
(0.420-0.582) (0.394-0.578) (2.92-95.39)

Sandy clay loam 0.398 - 0.330 21.85 015 498
(0.332-0.464) (0.235-0.425) (4.42-108.0)

Clay loam 0.464 0.309 20.88 0.10 366
(0.409-0.519) (0.279-0.501) (4.79-91.10)

Silty clay loam 0.471 0432 27.30 0.10 689
(0.418-0.524) (0.347-0.517) (5.67-131.50)

Sandy clay 0.430 0.321 23.90 0.06 45
(0.370-0.490) (0.207-0.435) (4.08-140.2)

Silty clay 0479 0423 20.22 0.05 127
(0.425-0.533) (0.334-0.512) (6.13-139.4)

Clay 0.475 0.385 31.63 0.03 291
(0.427-0.523) (0.269-0.501) (6.39-156.5)

The numbers in parentheses below each

iven.

parameter are one standard deviation around the parameter valuef

ource: Rawls, Brakensiek, and Miller, 1983.



Example 9.1 GREEN-AMPT TIME TO SURFACE SATURATION
Guelph Loam has the following soil properties (Mein and Larson, 1973) for use in the

Green-Ampt equation:

K, = 3.67x 10" cm/sec
6, = 0.523
7§ -31.4 cm water

For an initial moisture content of = 0.3, compute the time to surface saturation fo
the following storm rainfall:

i = 6K, for 10 min
i = 3K, thereafter

Solution. The initial moisture deficit, M, = 0.523 - 0.300 = 0.223. For the first
rainfall segment, we compute the volume of infiltration required to produce saturation
from Eq. (9.12):

Fs=wy,M,/(1-i/K,)=(-314 c¢m)(0.223) / (1 -6K/K,)=1.40cm
The rainfall volume during the first 10 minutes 1S
10i = (10 min) (6 - 3.67 x 10™ cm/sec)(60 sec/min) = 1.31 ¢cm

since 1.31 < 1.40, all rainfall infiltrates and surface saturation is not reached, and
F(10min) = 1.31 cm.

The volume required for surface saturation during the lower rainfall rate of i = 3K is

Fy=(-31.4 cm)(0.223) / (1 - 3K, /K, ) =3.50 cm

Thus, an incremental volume of F = F,— F(10 min) = 3.50 — 1.31 =2.19 cm must
be supplied before surface saturation occurs. This requires an incremental time of

t = FAi=219cm)/ 3 -3.67 x 10 cm/sec) = 1989 sec
= 33.15 min
Thus, the total time to surface saturation 18 10 + 33.15 = 43.15 min.



