ion

n to asis

les. ul A

each

bles

0,

4.5 EXERCISES

For each subspace in Exercises 1-8, (a) find a basis for the subspace, and (b) state the dimension.

1.
$$\left\{ \begin{bmatrix} s-2t\\ s+t\\ 3t \end{bmatrix} : s,t \text{ in } \mathbb{R} \right\}$$
 2. $\left\{ \begin{bmatrix} 2a\\ -4b\\ -2a \end{bmatrix} : a,b \text{ in } \mathbb{R} \right\}$

2.
$$\left\{ \begin{bmatrix} 2a \\ -4b \\ -2a \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$

3.
$$\left\{ \begin{bmatrix} 2c \\ a-b \\ b-3c \\ a+2b \end{bmatrix} : a, b, c \text{ in } \mathbb{R} \right\}$$
4.
$$\left\{ \begin{bmatrix} p+2q \\ -p \\ 3p-q \\ p+q \end{bmatrix} : p, q \text{ in } \mathbb{R} \right\}$$

4.
$$\left\{ \begin{bmatrix} p+2q\\-p\\3p-q\\p+q \end{bmatrix} : p, q \text{ in } \mathbb{R} \right\}$$

5.
$$\left\{ \begin{bmatrix} p-2q\\2p+5r\\-2q+2r\\-3p+6r \end{bmatrix} : p, q, r \text{ in } \mathbb{R} \right\}$$

6.
$$\left\{ \begin{bmatrix} 3a - c \\ -b - 3c \\ -7a + 6b + 5c \\ -3a + c \end{bmatrix} : a, b, c \text{ in } \mathbb{R} \right\}$$

7.
$$\{(a,b,c): a-3b+c=0, b-2c=0, 2b-c=0\}$$

8.
$$\{(a,b,c,d): a-3b+c=0\}$$

9. Find the dimension of the subspace of all vectors in \mathbb{R}^3 whose first and third entries are equal.

10. Find the dimension of the subspace
$$H$$
 of \mathbb{R}^2 spanned by $\begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 10 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 15 \end{bmatrix}$.

In Exercises 11 and 12, find the dimension of the subspace spanned by the given vectors.

$$\mathbf{U}. \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \begin{bmatrix} -2\\-1\\1 \end{bmatrix}, \begin{bmatrix} 5\\2\\2 \end{bmatrix}$$

$$12\begin{bmatrix} 1\\ -2\\ 0\end{bmatrix}, \begin{bmatrix} -3\\ -6\\ 0\end{bmatrix}, \begin{bmatrix} -2\\ 3\\ 5\end{bmatrix}, \begin{bmatrix} -3\\ 5\\ 5\end{bmatrix}$$

Determine the dimensions of Nul A and Col A for the matrices hown in Exercises 13-18.

$$\mathbf{13.} \ A = \begin{bmatrix} 1 & -6 & 9 & 0 & -2 \\ 0 & 1 & 2 & -4 & 5 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

ver. Here

3. Also,

$$\mathbf{H} \mathbf{A} = \begin{bmatrix} 1 & 2 & -4 & 3 & -2 & 6 & 0 \\ 0 & 0 & 0 & 1 & 0 & -3 & 7 \\ 0 & 0 & 0 & 0 & 1 & 4 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

ains more

then T is
$$\begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \textbf{16.} \quad A = \begin{bmatrix} 3 & 2 \\ -6 & 5 \end{bmatrix}$$

$$\mathbf{17.} \ \ A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

18.
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

In Exercises 19 and 20, V is a vector space. Mark each statement True or False. Justify each answer.

19. a. The number of pivot columns of a matrix equals the dimension of its column space.

b. A plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3 .

c. The dimension of the vector space \mathbb{P}_4 is 4.

d. If $\dim V = n$ and S is a linearly independent set in V, then S is a basis for V.

e. If a set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ spans a finite-dimensional vector space V and if T is a set of more than p vectors in V, then T is linearly dependent.

20. a. \mathbb{R}^2 is a two-dimensional subspace of \mathbb{R}^3 .

b. The number of variables in the equation $A\mathbf{x} = \mathbf{0}$ equals the dimension of Nul A.

c. A vector space is infinite-dimensional if it is spanned by an infinite set.

d. If $\dim V = n$ and if S spans V, then S is a basis of V.

e. The only three-dimensional subspace of \mathbb{R}^3 is \mathbb{R}^3 itself.

21. The first four Hermite polynomials are 1, 2t, $-2 + 4t^2$, and $-12t + 8t^3$. These polynomials arise naturally in the study of certain important differential equations in mathematical physics.2 Show that the first four Hermite polynomials form a basis of \mathbb{P}_3 .

22. The first four Laguerre polynomials are $1, 1-t, 2-4t+t^2$, and $6 - 18t + 9t^2 - t^3$. Show that these polynomials form a basis of \mathbb{P}_3 .

23. Let $\mathcal B$ be the basis of $\mathbb P_3$ consisting of the Hermite polynomials in Exercise 21, and let $\mathbf{p}(t) = -1 + 8t^2 + 8t^3$. Find the coordinate vector of \mathbf{p} relative to \mathcal{B} .

24. Let $\mathcal B$ be the basis of $\mathbb P_2$ consisting of the first three Laguerre polynomials listed in Exercise 22, and let $\mathbf{p}(t) = 5 + 5t - 2t^2$. Find the coordinate vector of \mathbf{p} relative

25. Let S be a subset of an n-dimensional vector space V, and suppose S contains fewer than n vectors. Explain why Scannot span V.

26. Let H be an n-dimensional subspace of an n-dimensional vector space V. Show that H = V.

27. Explain why the space $\mathbb P$ of all polynomials is an infinitedimensional space.

² See Introduction to Functional Analysis, 2d ed., by A. E. Taylor and David C. Lay (New York: John Wiley & Sons, 1980), pp. 92-93. Other sets of polynomials are discussed there, too.

NUMERICAL NOTE -

Many algorithms discussed in this text are useful for understanding concepts and making simple computations by hand. However, the algorithms are often unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix to echelon form and count the pivots. But unless exact arithmetic is performed on a matrix whose entries are specified exactly, row operations can change the apparent rank of a matrix. For instance, if the value of x in the matrix $\begin{bmatrix} 5 & 7 \\ 5 & x \end{bmatrix}$

is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending on whether the computer treats x - 7 as zero.

In practical applications, the effective rank of a matrix A is often determined from the singular value decomposition of A, to be discussed in Section 7.4. This decomposition is also a reliable source of bases for Col A, Row A, Nul A, and Nul A^T .

WEB

PRACTICE PROBLEMS

The matrices below are row equivalent.

- 1. Find rank A and dim Nul A
- 2. Find bases for Col A and Row A.
- 3. What is the next step to perform to find a basis for Nul A?
- **4.** How many pivot columns are in a row echelon form of A^T ?

4.6 EXERCISES

In Exercises 1–4, assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

1.
$$A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

2.
$$A = \begin{bmatrix} 1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0 \end{bmatrix},$$
$$B = \begin{bmatrix} 1 & 3 & 4 & -1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

3.
$$A = \begin{bmatrix} 2 & 6 & -6 & 6 & 3 & 6 \\ -2 & -3 & 6 & -3 & 0 & -6 \\ 4 & 9 & -12 & 9 & 3 & 12 \\ -2 & 3 & 6 & 3 & 3 & -6 \end{bmatrix},$$
$$B = \begin{bmatrix} 2 & 6 & -6 & 6 & 3 & 6 \\ 0 & 3 & 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & 1 & -2 & 0 & 1 & -2 \\ 1 & 2 & -3 & 0 & -2 & -3 \\ 1 & -1 & 0 & 0 & 1 & 6 \\ 1 & -2 & 2 & 1 & -3 & 0 \\ 1 & -2 & 1 & 0 & 2 & -1 \end{bmatrix},$$

$$B = \begin{bmatrix} 1 & 1 & -2 & 0 & 1 & -2 \\ 0 & 1 & -1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 1 & -13 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

17. a. The
$$A^T$$
.

Eigenvectors and Difference Equations

This section concludes by showing how to construct solutions of the first-order difference equation discussed in the chapter introductory example:

$$\mathbf{x}_{k+1} = A\mathbf{x}_k \quad (k = 0, 1, 2, ...)$$
 (8)

If A is an $n \times n$ matrix, then (8) is a recursive description of a sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n . A solution of (8) is an explicit description of $\{x_k\}$ whose formula for each x_k does not depend directly on A or on the preceding terms in the sequence other than the initial

The simplest way to build a solution of (8) is to take an eigenvector \mathbf{x}_0 and its corresponding eigenvalue λ and let

$$\mathbf{x}_k = \lambda^k \mathbf{x}_0 \quad (k = 1, 2, \ldots) \tag{9}$$

This sequence is a solution because

$$A\mathbf{x}_k = A(\lambda^k \mathbf{x}_0) = \lambda^k (A\mathbf{x}_0) = \lambda^k (\lambda \mathbf{x}_0) = \lambda^{k+1} \mathbf{x}_0 = \mathbf{x}_{k+1}$$

Linear combinations of solutions in the form of equation (9) are solutions, too! See Exercise 33.

PRACTICE PROBLEMS

- **1.** Is 5 an eigenvalue of $A = \begin{bmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix}$?
- 2. If x is an eigenvector of A corresponding to λ , what is A^3x ?
- 3. Suppose that \mathbf{b}_1 and \mathbf{b}_2 are eigenvectors corresponding to distinct eigenvalues λ_1 and λ_2 , respectively, and suppose that \mathbf{b}_3 and \mathbf{b}_4 are linearly independent eigenvectors corresponding to a third distinct eigenvalue λ_3 . Does it necessarily follow that $\{\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3,\mathbf{b}_4\}$ is a linearly independent set? [Hint: Consider the equation $c_1\mathbf{b}_1$ + $c_2\mathbf{b}_2 + (c_3\mathbf{b}_3 + c_4\mathbf{b}_4) = \mathbf{0}.$

5.1 EXERCISES

g g

5)

/e

6)

7)

of

- 1. Is $\lambda = 2$ an eigenvalue of $\begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$? Why or why not?
- 2. Is $\lambda = -3$ an eigenvalue of $\begin{bmatrix} -1 & 4 \\ 6 & 9 \end{bmatrix}$? Why or why not?
- 3. Is $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} 1 & -1 \\ 6 & -4 \end{bmatrix}$? If so, find the eigen-
- **4.** Is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} 5 & 2 \\ 3 & 6 \end{bmatrix}$? If so, find the
- 5. Is $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} -4 & 3 & 3 \\ 2 & -3 & -2 \\ -1 & 0 & -2 \end{bmatrix}$? If so, find to each listed eigenvalue.

 9. $A = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$, $\lambda = 1, 3$ the eigenvalue.

- **6.** Is $\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$ an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 2 & 7 \\ 5 & 6 & 4 \end{bmatrix}$? If so, find the
- 7. Is $\lambda = 4$ an eigenvalue of $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find one corresponding eigenvector.
- 8. Is $\lambda = 1$ an eigenvalue of $\begin{bmatrix} 4 & -2 & 3 \\ 0 & -1 & 3 \\ -1 & 2 & -2 \end{bmatrix}$? If so, find one

In Exercises 9-16, find a basis for the eigenspace corresponding

9.
$$A = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, \lambda = 1, 3$$

10.
$$A = \begin{bmatrix} -4 & 2 \\ 3 & 1 \end{bmatrix}, \lambda = -5$$

11.
$$A = \begin{bmatrix} 1 & -3 \\ -4 & 5 \end{bmatrix}, \lambda = -1, 7$$

12.
$$A = \begin{bmatrix} 4 & 1 \\ 3 & 6 \end{bmatrix}, \lambda = 3, 7$$

13.
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \lambda = 1, 2, 3$$

14.
$$A = \begin{bmatrix} 4 & 0 & -1 \\ 3 & 0 & 3 \\ 2 & -2 & 5 \end{bmatrix}, \lambda = 3$$

15.
$$A = \begin{bmatrix} -4 & 1 & 1 \\ 2 & -3 & 2 \\ 3 & 3 & -2 \end{bmatrix}, \lambda = -5$$

16.
$$A = \begin{bmatrix} 5 & 0 & -1 & 0 \\ 1 & 3 & 0 & 0 \\ 2 & -1 & 3 & 0 \\ 4 & -2 & -2 & 4 \end{bmatrix}, \lambda = 4$$

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2 \end{bmatrix}$$

17.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2 \end{bmatrix}$$
 18.
$$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 3 \end{bmatrix}$$

19. For
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
, find one eigenvalue, with no calculation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly independent eigenvectors of $A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$. Justify your answer.

In Exercises 21 and 22, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer

- 21. a. If $Ax = \lambda x$ for some vector x, then λ is an eigenvalue of
 - b. A matrix A is not invertible if and only if 0 is an eigenvalue of A.
 - c. A number c is an eigenvalue of A if and only if the equation $(A - cI)\mathbf{x} = \mathbf{0}$ has a nontrivial solution.
 - d. Finding an eigenvector of A may be difficult, but checking whether a given vector is in fact an eigenvector is
 - e. To find the eigenvalues of A, reduce A to echelon form.
- 22. a. If $Ax = \lambda x$ for some scalar λ , then x is an eigenvector of
 - b. If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.

- c. A steady-state vector for a stochastic matrix is actually at eigenvector.
- d. The eigenvalues of a matrix are on its main diagonal.
- e. An eigenspace of A is a null space of a certain matrix.
- 23. Explain why a 2 × 2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.
- 24. Construct an example of a 2 × 2 matrix with only one disting eigenvalue.
- 25. Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} . [Hint: Suppose a nonzero] satisfies $A\mathbf{x} = \lambda \mathbf{x}$.
- 26. Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.
- 27. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T . [Hint: Find out how $A - \lambda I$ and $A^T - \lambda I$]
- 28. Use Exercise 27 to complete the proof of Theorem 1 for the case in which A is lower triangular.
- **29.** Consider an $n \times n$ matrix A with the property that the row sums all equal the same number s. Show that s is a eigenvalue of A. [Hint: Find an eigenvector.]
- **30.** Consider an $n \times n$ matrix A with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear transformation T. Without writing A, find an eigenvalue of A and describe the eigenspace.

- 31. T is the transformation on \mathbb{R}^2 that reflects points across some line through the origin.
- **32.** T is the transformation on \mathbb{R}^3 that rotates points about some line through the origin.
- 33. Let \mathbf{u} and \mathbf{v} be eigenvectors of a matrix A, with corresponding eigenvalues λ and μ , and let c_1 and c_2 be scalars. Define

$$\mathbf{x}_k = c_1 \lambda^k \mathbf{u} + c_2 \mu^k \mathbf{v} \quad (k = 0, 1, 2, ...)$$

- a. What is \mathbf{x}_{k+1} , by definition?
- b. Compute $A\mathbf{x}_k$ from the formula for \mathbf{x}_k , and show that $A\mathbf{x}_k = \mathbf{x}_{k+1}$. This calculation will prove that the se quence $\{x_k\}$ defined above satisfies the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k \ (k = 0, 1, 2, ...).$
- 34. Describe how you might try to build a solution of a difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$ (k = 0, 1, 2, ...) if you were given the initial x_0 and this vector did not happen to be an eigenvector of A. [Hint: How might you relate x0 to eigenvectors of A]
- 35. Let u and v be the vectors shown in the figure, and suppose **u** and **v** are eigenvectors of a 2×2 matrix A that correspond to eigenvalues 2 and 3, respectively. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ by the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$ for each \mathbf{x} in \mathbb{R}^2 , and let $\mathbf{w} = \mathbf{u} + \mathbf{v}$. Make a copy of the figure, and or

the same $T(\mathbf{v})$, and

36. Repeat E that corre

[M] In Exerci values of the row reduction

THE

This explicit formula for \mathbf{x}_k gives the solution of the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$. As $k \to \infty$, $(.92)^k$ tends to zero and \mathbf{x}_k tends to $\begin{bmatrix} .375 \\ .625 \end{bmatrix} = .125\mathbf{v}_1$.

The calculations in Example 5 have an interesting application to a Markov chain discussed in Section 4.9. Those who read that section may recognize that matrix A in Example 5 above is the same as the migration matrix M in Section 4.9, \mathbf{x}_0 is the initial population distribution between city and suburbs, and \mathbf{x}_k represents the population distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence \mathbf{x}_k tends to a steady-state vector. Now we know why the \mathbf{x}_k behave this way, at least for the migration matrix. The steady-state vector is $.125\mathbf{v}_1$, a multiple of the eigenvector \mathbf{v}_1 , and formula (5) for \mathbf{x}_k shows precisely why $\mathbf{x}_k \to .125\mathbf{v}_1$.

NUMERICAL NOTES -

- Computer software such as Mathematica and Maple can use symbolic calculations to find the characteristic polynomial of a moderate-sized matrix. But there is no formula or finite algorithm to solve the characteristic equation of a general $n \times n$ matrix for $n \ge 5$.
- 2. The best numerical methods for finding eigenvalues avoid the characteristic polynomial entirely. In fact, MATLAB finds the characteristic polynomial of a matrix A by first computing the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A and then expanding the product $(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$.
- 3. Several common algorithms for estimating the eigenvalues of a matrix Aare based on Theorem 4. The powerful QR algorithm is discussed in the exercises. Another technique, called *Jacobi's method*, works when $A = A^{T}$ and computes a sequence of matrices of the form

$$A_1 = A$$
 and $A_{k+1} = P_k^{-1} A_k P_k$ $(k = 1, 2, ...)$

Each matrix in the sequence is similar to A and so has the same eigenvalues as A. The nondiagonal entries of A_{k+1} tend to zero as k increases, and the diagonal entries tend to approach the eigenvalues of A.

Other methods of estimating eigenvalues are discussed in Section 5.8.

PRACTICE PROBLEM

Find the characteristic equation and eigenvalues of $A = \begin{bmatrix} 1 & -4 \\ 4 & 2 \end{bmatrix}$.

5.2 EXERCISES

and the characteristic polynomial and the real eigenvalues of the natrices in Exercises 1-8.

$$L\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

4)

ve

(5)

$$\mathbf{2.} \begin{bmatrix} -4 & -1 \\ 6 & 1 \end{bmatrix}$$

$$4. \begin{bmatrix} 8 & 2 \\ 3 & 3 \end{bmatrix}$$

5.
$$\begin{bmatrix} 8 & 4 \\ 4 & 8 \end{bmatrix}$$

5.
$$\begin{bmatrix} 8 & 4 \\ 4 & 8 \end{bmatrix}$$
 6. $\begin{bmatrix} 9 & -2 \\ 2 & 5 \end{bmatrix}$ 7. $\begin{bmatrix} 5 & 3 \\ -4 & 4 \end{bmatrix}$ 8. $\begin{bmatrix} -4 & 3 \\ 2 & 1 \end{bmatrix}$

Exercises 9-14 require techniques from Section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for 3×3 determinants described **SOLUTION** Since A is a triangular matrix, the eigenvalues are 5 and -3, each wi multiplicity 2. Using the method in Section 5.1, we find a basis for each eigenspace.

Using the method in Section 5.1, we find a disconstruction
$$\lambda = 5$$
: $\mathbf{v}_1 = \begin{bmatrix} -8 \\ 4 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -16 \\ 4 \\ 0 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Basis for
$$\lambda = -3$$
: $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

The set $\{v_1,\ldots,v_4\}$ is linearly independent, by Theorem 7. So the matrix p[$\mathbf{v}_1 \cdots \mathbf{v}_4$] is invertible, and $A = PDP^{-1}$, where

$$P = \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

PRACTICE PROBLEMS

- 1. Compute A^8 , where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$.
- **2.** Let $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Suppose you are told that $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.
- 3. Let A be a 4×4 matrix with eigenvalues 5, 3, and -2, and suppose you know the eigenspace for $\lambda=3$ is two-dimensional. Do you have enough information determine if A is diagonalizable?

5.3 EXERCISES

In Exercises 1 and 2, let $A = PDP^{-1}$ and compute A^4 .

WEB

2.
$$P = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

In Exercises 3 and 4, use the factorization $A = PDP^{-1}$ to compute A^k , where k represents an arbitrary positive integer.

Soute
$$A^k$$
, where k represents an article A^k south A^k , where k represents an article A^k so A^k

4.
$$\begin{bmatrix} 1 & -6 \\ 2 & -6 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$$

In Exercises 5 and 6, the matrix A is factored in the form PDP^{-1} . Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.

5.
$$A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 4 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

13.

15.

17.

19.

In Ex

Mark Theo you t

21.

Diagonalize the matrices in Exercises 7-20, if possible. The eigenvalues for Exercises 11-16 and 18 are included below

natrix.
7.
$$\begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$$
8.
$$\begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$$

11.
$$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 2 \end{bmatrix}$$

12.
$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
$$\lambda = 2, 5$$

13.
$$\begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$
$$\lambda = 1, 5$$

14.
$$\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
$$\lambda = 2, 3$$

15.
$$\begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
$$\lambda = 0, 1$$

16.
$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -2 \\ 1 & 3 & 1 \end{bmatrix}$$
$$\lambda = 0$$

17.
$$\begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$

18.
$$\begin{bmatrix} 2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2 \end{bmatrix}$$

$$\lambda = -2 -1.0$$

$$\begin{bmatrix}
 5 & -3 & 0 & 9 \\
 0 & 3 & 1 & -2 \\
 0 & 0 & 2 & 0 \\
 0 & 0 & 0 & 2
 \end{bmatrix}$$

$$\mathbf{20.} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

In Exercises 21 and 22, A, B, P, and D are $n \times n$ matrices. Mark each statement True or False. Justify each answer. (Study Theorems 5 and 6 and the examples in this section carefully before you try these exercises.)

- **21.** a. A is diagonalizable if $A = PDP^{-1}$ for some matrix D and some invertible matrix P.
 - b. If \mathbb{R}^n has a basis of eigenvectors of A, then A is diagonalizable.
 - c. A is diagonalizable if and only if A has n eigenvalues, counting multiplicities.
 - d. If A is diagonalizable, then A is invertible.
- 22. a. A is diagonalizable if A has n eigenvectors.
 - b. If A is diagonalizable, then A has n distinct eigenvalues.
 - c. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
 - d. If A is invertible, then A is diagonalizable.
- B. A is a 5 x 5 matrix with two eigenvalues. One eigenspace is three-dimensional, and the other eigenspace is two-dimensional. Is A diagonalizable? Why?
- A is a 3 \times 3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A diagonalizable? Why?

- **25.** *A* is a 4 × 4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that *A* is *not* diagonalizable? Justify your answer.
- 26. A is a 7 × 7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is threedimensional. Is it possible that A is not diagonalizable? Justify your answer.
- **27.** Show that if A is both diagonalizable and invertible, then so is A^{-1} .
- **28.** Show that if *A* has *n* linearly independent eigenvectors, then so does A^T . [*Hint:* Use the Diagonalization Theorem.]
- **29.** A factorization $A = PDP^{-1}$ is not unique. Demonstrate this for the matrix A in Example 2. With $D_1 = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$, use the information in Example 2 to find a matrix P_1 such that $A = P_1D_1P_1^{-1}$.
- **30.** With *A* and *D* as in Example 2, find an invertible P_2 unequal to the *P* in Example 2, such that $A = P_2 D P_2^{-1}$.
- Construct a nonzero 2 x 2 matrix that is invertible but not diagonalizable.
- 32. Construct a nondiagonal 2×2 matrix that is diagonalizable but not invertible.
- [M] Diagonalize the matrices in Exercises 33–36. Use your matrix program's eigenvalue command to find the eigenvalues, and then compute bases for the eigenspaces as in Section 5.1.

33.
$$\begin{bmatrix} 9 & -4 & -2 & -4 \\ -56 & 32 & -28 & 44 \\ -14 & -14 & 6 & -14 \\ 42 & -33 & 21 & -45 \end{bmatrix}$$

34.
$$\begin{bmatrix} 4 & -9 & -7 & 8 & 2 \\ -7 & -9 & 0 & 7 & 14 \\ 5 & 10 & 5 & -5 & -10 \\ -2 & 3 & 7 & 0 & 4 \\ -3 & -13 & -7 & 10 & 11 \end{bmatrix}$$

35.
$$\begin{bmatrix} 13 & -12 & 9 & -15 & 9 \\ 6 & -5 & 9 & -15 & 9 \\ 6 & -12 & -5 & 6 & 9 \\ 6 & -12 & 9 & -8 & 9 \\ -6 & 12 & 12 & -6 & -2 \end{bmatrix}$$

36.
$$\begin{bmatrix} 24 & -6 & 2 & 6 & 2 \\ 72 & 51 & 9 & -99 & 9 \\ 0 & -63 & 15 & 63 & 63 \\ 72 & 15 & 9 & -63 & 9 \\ 0 & 63 & 21 & -63 & -27 \end{bmatrix}$$

ıd

iat

to

4,5

1,10,11

5.1 1,4,9,13 5.2 2,5 5.3 1,8,10