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Abstract—Designing cost-efficient, secure network protocols for
Wireless Sensor Networks (WSNs) is a challenging problem be-
cause sensors are resource-limited wireless devices. Since the com-
munication cost is the most dominant factor in a sensor’s energy
consumption, we introduce an energy-efficient Virtual Energy-
Based Encryption and Keying (VEBEK) scheme for WSNs that
significantly reduces the number of transmissions needed for
rekeying to avoid stale keys. In addition to the goal of saving
energy, minimal transmission is imperative for some military
applications of WSNs where an adversary could be monitoring
the wireless spectrum. VEBEK is a secure communication frame-
work where sensed data is encoded using a scheme based on a
permutation code generated via the RC4 encryption mechanism.
The key to the RC4 encryption mechanism dynamically changes
as a function of the residual virtual energy of the sensor. Thus,
a one-time dynamic key is employed for one packet only and
different keys are used for the successive packets of the stream.
The intermediate nodes along the path to the sink are able to
verify the authenticity and integrity of the incoming packets using
a predicted value of the key generated by the sender’s virtual
energy, thus requiring no need for specific rekeying messages.
VEBEK is able to efficiently detect and filter false data injected
into the network by malicious outsiders. The VEBEK framework
consists of two operational modes (VEBEK-I and VEBEK-II),
each of which is optimal for different scenarios. In VEBEK-
I, each node monitors its one-hop neighbors where VEBEK-
II statistically monitors downstream nodes. We have evaluated
VEBEK’s feasibility and performance analytically and through
simulations. Our results show that VEBEK, without incurring
transmission overhead (increasing packet size or sending control
messages for rekeying), is able to eliminate malicious data from
the network in an energy efficient manner. We also show that
our framework performs better than other comparable schemes
in the literature with an overall 60%−100% improvement in
energy savings without the assumption of a reliable medium
access control (MAC) layer.

Index Terms—Security, WSN Security, VEBEK, Virtual
Energy-Based Keying, Resource constrained devices

I. I NTRODUCTION

Rapidly developed WSN technology is no longer nascent
and will be used in a variety of application scenarios. Typical
application areas include environmental, military, and com-
mercial enterprises [1]. For example, in a battlefield scenario,
sensors may be used to detect the location of enemy sniper
fire or to detect harmful chemical agents before they reach
troops. In another potential scenario, sensor nodes forming a

network under water could be used for oceanographic data
collection, pollution monitoring, assisted navigation, military
surveillance, and mine reconnaissance operations. Future im-
provements in technology will bring more sensor applications
into our daily lives and the use of sensors will also evolve
from merely capturing data to a system that can be used for
real-time compound event alerting [2].

From a security standpoint, it is very important to provide
authentic and accurate data to surrounding sensor nodes and
to the sink to trigger time-critical responses (e.g., troop move-
ment, evacuation, first response deployment) [3]. Protocols
should be resilient against false data injected into the network
by malicious nodes. Otherwise, consequences for propagating
false data or redundant data are costly, depleting limited
network resources and wasting response efforts.

However, securing sensor networks poses unique challenges
to protocol builders because these tiny wireless devices are
deployed in large numbers, usually in unattended environ-
ments, and are severely limited in their capabilities and re-
sources (e.g., power, computational capacity, and memory).
For instance, a typical sensor [4] operates at the frequency
of 2.4 GHz, has a data rate of 250Kbps, 128KB of program
flash memory, 512KB of memory for measurements, transmit
power between 100µW and 1mW, and a communications
range of 30m to 100m. Therefore, protocol builders must
be cautious about utilizing the limited resources onboard the
sensors efficiently.

In this paper, we focus on keying mechanisms for WSNs.
There are two fundamental key management schemes for
WSNs:staticanddynamic. In static key management schemes,
key management functions (i.e., key generation and distri-
bution) are handled statically. That is, the sensors have a
fixed number of keys loaded either prior to or shortly after
network deployment. On the other hand, dynamic key man-
agement schemes perform keying functions (rekeying) either
periodically or on demand as needed by the network. The
sensors dynamically exchange keys to communicate. Although
dynamic schemes are more attack-resilient than static ones,
one significant disadvantage is that they increase the commu-
nication overhead due to keys being refreshed or redistributed
from time to time in the network. There are many reasons
for key refreshment, including: updating keys after a key

VERSION ACCEPTED FOR PUBLICATION BY IEEE FOR EDUCATIONAL PURPOSES ONLY



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXX 20XX 2

revocation has occurred, refreshing the key such that it does
not become stale, or changing keys due to dynamic changes
in the topology. In this paper, we seek to minimize the over-
head associated with refreshing keys to avoid them becoming
stale. Because the communication cost is the most dominant
factor in a sensor’s energy consumption [5] [6], the message
transmission cost for rekeying is an important issue in a WSN
deployment (as analyzed in the next section). Furthermore, for
certain WSN applications (e.g., military applications), it may
be very important to minimize the number of messages to
decrease the probability of detection if deployed in an enemy
territory. That is, being less ”chatty” intuitively decreases the
number of opportunities for malicious entities to eavesdrop or
intercept packets.

The purpose of this paper is to develop an efficient
and secure communication framework for WSN applications.
Specifically, in this paper we introduce Virtual Energy-Based
Encryption and Keying (VEBEK) for WSNs, which is pri-
marily inspired by our previous work [7]. VEBEK’s secure
communication framework provides a technique to verify
data in line and drop false packets from malicious nodes,
thus maintaining the health of the sensor network. VEBEK
dynamically updates keys without exchanging messages for
key renewals and embeds integrity into packets as opposed
to enlarging the packet by appending message authentication
codes (MACs). Specifically, each sensed data is protected
using a simple encoding scheme based on a permutation code
generated with the RC4 encryption scheme and sent toward the
sink. The key to the encryption scheme dynamically changes
as a function of theresidual virtual energy of the sensor,
thus requiring no need for rekeying. Therefore, a one-time
dynamic key is used for one message generated by the source
sensor and different keys are used for the successive packets
of the stream. The nodes forwarding the data along the path
to the sink are able to verify the authenticity and integrity of
the data and to provide non-repudiation. The protocol is able
to continue its operations under dire communication cases as
it may be operating in a high-error-prone deployment area
like under water. VEBEK unbundles key generation from
other security services, namely authentication, integrity, and
non-repudiation; thus, its flexible modular architecture allows
for adoption of other encryption mechanisms if desired. The
contributions of this paper are as follows: (1) a dynamic
en-route filtering mechanism without that does not exchange
explicit control messages for rekeying; (2) provision of one-
time keys for each packet transmitted to avoid stale keys;
(3) a modular and flexible security architecture with a sim-
ple technique for ensuring authenticity, integrity and non-
repudiation of data without enlarging packets with MACs; (4)
a robust secure communication framework that is operational
in dire communication situations and over unreliable MACs.
Both analytical and simulation results verify the feasibility
of VEBEK. We also illustrate that VEBEK is significantly
more energy efficient than other comparable schemes in the
literature with an overall 60%−100% improvement.

The paper proceeds as follows. To motivate our work, a
preliminary analysis of the rekeying cost with and without
explicit control messages is given in Section II. Section

III discusses the semantics of VEBEK. VEBEK’s different
operational modes are discussed in Section IV. An analytical
framework and performance evaluation results including a
comparison with other relevant works are given in Section
V. Section VI summarizes the design rationale and benefits of
the VEBEK framework. Related work is presented in Section
VII. Finally, Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

One significant aspect of confidentiality research in WSNs
entails designing efficientkey managementschemes. This is
because regardless of the encryption mechanism chosen for
WSNs, the keys must be made available to the communicating
nodes (e.g., sources, sink(s)). The keys could be distributed to
the sensors before the network deployment or they could be
re-distributed (rekeying) to nodes on demand as triggered by
keying events. The former isstatic key[8] management and
the latter isdynamic key[9] management. There are myriads of
variations of these basic schemes in the literature. In this work,
we only consider dynamic keying mechanisms in our analysis
since VEBEK uses the dynamic keying paradigm. The main
motivation behind VEBEK is that the communication cost is
the most dominant factor in a sensor’s energy consumption
[5] [6]. Thus, in this section, we present a simple analysis
for the rekeying cost with and without the transmission of
explicit control messages. Rekeying with control messages is
the approach of existing dynamic keying schemes whereas
rekeying without extra control messages is the primary feature
of the VEBEK framework.

Dynamic keying schemes go through the phase of rekeying
either periodically or on demand as needed by the network to
refresh the security of the system. With rekeying, the sensors
dynamically exchange keys that are used for securing the
communication. Hence, the energy cost function for the keying
process from a source sensor to the sink while sending a
message on a particular path with dynamic key-based schemes
can be written as follows (assuming computation cost,Ecomp,
would approximately be fixed):

EDyn = (EKdisc
+ Ecomp) ∗ E[ηh] ∗

χ

τ
(1)

whereχ is the number of packets in a message,τ is the key
refresh rate in packets per key,EKdisc

is the cost of shared-key
discovery with the next hop sensor after initial deployment,
andE[ηh] is the expected number of hops. In dynamic key-
based schemes,τ may change periodically, on-demand, or
after a node-compromise. A good analytical lower bound for
E[ηh] is given in [10] as

E[ηh] =
D − tr

E[dh]
+ 1 (2)

whereD is the end-to-end distance (m) between the sink and
the source sensor node,tr is the approximated transmission
range (m), andE[dh] is the expected hop distance (m) [11].
An accurate estimation ofE[dh] can be found in [11]. Finally,
EKdisc

, can be written as follows:

EKdisc
= {E[Ne] ∗ Enode) ∗M − 2 ∗ Enode} (3)
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Fig. 1. Keying cost of dynamic key-based schemes based onE[nh] vs.
VEBEK.

Enode = Etx + Erx + Ecomp (4)

where Enode is the approximate cost per node for key
generation and transmission,E[Ne] is the expected number
of neighbors for a given sensor,M is the number of key
establishment messages between two nodes, andEtx andErx

are the energy cost of transmission and reception, respec-
tively. Given the transmission range of sensors (assuming
bi-directional communication links for simplicity),tr, total
deployment area,A, total number of sensors deployed,N ,
E[Ne] can be computed as

E[Ne] =
N ∗ π ∗ t2r

A
(5)

On the other hand, VEBEK does rekeying without messages.
There are two operational modes of VEBEK (VEBEK-I and
VEBEK-II). The details of these modes are given in Section
IV. However, for now it suffices to know that VEBEK-I is rep-
resentative of a dynamic system without rekeying messages,
but with some initial neighborhood info exchange whereas
VEBEK-II is a dynamic system without rekeying messages
and without any initial neighborhood info exchange. Using
the energy values given in [4], Figure 1 shows the analytical
results for the above expressions. For both VEBEK modes,
we assume there would be a fixed cost ofEcomp

1 because
VEBEK does not exchange messages to refresh keys, but for
VEBEK-I, we also included the cost ofEKdisc

.
With this initial analysis, we see that dynamic key-based

schemes, in this scenario, spend a large amount of their
energy transmitting rekeying messages. With this observation,
the VEBEK framework is motivated to provide the same
benefits of dynamic key-based schemes, but with low energy
consumption. It does not exchange extra control messages for
key renewal. Hence, energy is only consumed for generating
the keys necessary for protecting the communication. The keys
are dynamic; thus, one key per packet is employed. This makes
VEBEK more resilient to certain attacks (e.g., replay attacks,
brute-force attacks, masquerade attacks).

III. SEMANTICS OF VEBEK

The VEBEK framework is comprised of three modules:
Virtual Energy-Based Keying, Crypto, and Forwarding.

1A more rigorous analysis is presented in Section V.

Fig. 2. Modular structure of VEBEK framework.

The virtual energy-based keying process involves the cre-
ation of dynamic keys. Contrary to other dynamic keying
schemes, it does not exchange extra messages to establish
keys. A sensor node computes keys based on its residual
virtual energyof the sensor. The key is then fed into the crypto
module.

The crypto module in VEBEK employs a simple encoding
process, which is essentially the process of permutation of
the bits in the packet according to the dynamically created
permutation code generated via RC4. The encoding is a
simple encryption mechanism adopted for VEBEK. However,
VEBEK’s flexible architecture allows for adoption of stronger
encryption mechanisms in lieu of encoding.

Lastly, the forwarding module handles the process of send-
ing or receiving of encoded packets along the path to the sink.

A high level view of the VEBEK framework and its
underlying modules are shown in Figure 2. These modules
are explained in further detail below. Important notations used
are given in Table I.

A. Virtual Energy-based Keying Module

The virtual energy-based keying module of the VEBEK
framework is one of the primary contributions of this paper. It
is essentially the method used for handling the keying process.
It produces a dynamic key that is then fed into the crypto
module.

In VEBEK, each sensor node has a certain virtual energy
value when it is first deployed in the network. The rationale
for using virtual energy as opposed to real battery levels as
in our earlier work, DEEF [7], is that in reality battery levels
may fluctuate and the differences in battery levels across nodes
may spur synchronization problems, which can cause packet
drops. These concerns have been addressed in VEBEK and
are discussed in detail in the performance evaluation section
(Section V).

After deployment, sensor nodes traverse several functional
states. The states mainly include node-stay-alive, packet recep-
tion, transmission, encoding and decoding. As each of these
actions occur, the virtual energy in a sensor node is depleted.
The current value of the virtual energy,Evc, in the node is
used as the key to the key generation function,F . During
the initial deployment, each sensor node will have the same
energy levelEini, therefore the initial key,K1, is a function
of the initial virtual energy value and an initialization vector
(IV ). The IV s are pre-distributed to the sensors. Subsequent
keys,Kj , are a function of the current virtual energy,Evc,
and the previous keyKj−1. VEBEK’s virtual energy-based
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TABLE I
NOTATIONS USED

Etx Tx energy Esens Sensing energy EFw Forwarding energy Pdrop Drop probability
Erx Rx energy Esa Staying alive energy EKdisc Key discovery energy ϕ Synch ratio
Ecomp Computation energy Evc Virtual cost EDyn Dynamic keying cost l packet size
Eenc Encoding energy Ep Perceived energy ESo Source node energy N # of nodes
Edec Decoding energy Eb Bridge energy E[ηh] Expected # of hops r # of watched nodes

keying module ensures that each detected packet2 is associated
with a new unique key generated based on the transient value
of the virtual energy. After the dynamic key is generated, it
is passed to the crypto module, where the desired security
services are implemented. The process of key generation is
initiated when data is sensed; thus, no explicit mechanism
is needed to refresh or update keys. Moreover, the dynamic
nature of the keys makes it difficult for attackers to intercept
enough packets to break the encoding algorithm. The details
are given in Algorithm 1. As mentioned above, each node

Algorithm 1 Compute Dynamic Key
1: ComputeDynamicKey(Evc, IDclr)
2: begin
3: j ← tx

IDclr

cnt

4: if j = 1 then
5: Kj ← F (Eini, IV )
6: else
7: Kj ← F (K(j−1), Evc)
8: end if
9: return Kj

10: end

computes and updates the transient value of its virtual energy
after performing some actions. Each action (or state traversal)
on a node is associated with a certain predetermined cost.
Since a sensor node will be either forwarding some other
sensor’s data or injecting its own data into the network,
the set of actions and their associated energies for VEBEK
includes packet reception (Erx), packet transmission (Etx),
packet encoding (Eenc), packet decoding (Edec) energies, and
the energy required to keep a node alive in the idle state
(Ea).3 Specifically, the transient value of the virtual energy,
Ev, is computed by decrementing the total of these predefined
associated costs,Evc, from the previous virtual energy value.

The exact procedure to compute virtual cost,Evc, slightly
differs if a sensor node is the originator of the data or the
forwarder (i.e., receiver of data from another sensor). In order
to successfully decode and authenticate a packet, a receiving
node must keep track of the energy of the sending node to
derive the key needed for decoding. In VEBEK, the operation
of tracking the energy of the sending node at the receiver is
called watchingand the energy value that is associated with
the watched sensor is calledVirtual Perceived Energy(Ep)
as in [7]. More formal definitions for watching are given as
follows.

2Indeed, the same key can be used for a certain number of transmissions,
n, to further save energy.

3The set of actions can be extended to include other actions depending on
the WSN application or functionality of the network.

Definition 1: Given a finite number of sensor nodes,N

(N = {1, .., N}), deployed in a region,watching is defined
as a node’s responsibility for monitoring and filtering packets
coming from a certain (configurable) number of sensor nodes,
r, wherer <= N . ⋖ is used to denote the watching operation.

Definition 2: Given a sensor nodei, the total number of
watched nodes,r, which the node is configured to watch,
constitutes awatching list, WLi for node i and WLi =
(1, 2, .., r). Nodei watches nodek if IDk ∈ WLi.

Deciding which nodes to watch and how many depends
on the preferred configuration of the VEBEK authentication
algorithm, which we designate as the operational mode of the
framework. Specifically, we propose two operational modes
VEBEK-I and VEBEK-II and they are discussed in the next
section.

When an event is detected by a source sensor, that node has
remained alive fort units of time since the last event (or since
the network deployment if this is the first event detected). After
detection of the event, the node sends thel-bit length packet
toward the sink. In this case, the following is the virtual cost
associated with the source node:

Evc = l ∗ (etx + eenc) + t ∗ ea + Esynch (6)

In the case where a node receives data from another node, the
virtual perceived energy value can be updated by decrementing
the cost associated with the actions performed by the sending
node using the following cost equation. Thus, assuming that
the receiving node has the initial virtual energy value of the
sending node and that the packet is successfully received and
decoded associated with a given source sensor,k, the virtual
cost of the perceived energy is computed as follows:

Ek
p = l ∗ (erx + edec + etx + eenc) + t ∗ 2 ∗ ea (7)

where in both the equations, the smalle′s refer to the one bit
energy costs of the associated parameter. However,Esynch

in (6) refers to a value to synchronize the source with
the watcher-forwarders toward the sink as watcher-forwarder
nodes spend more virtual energy due to packet reception and
decoding operations, which are not present in source nodes.
Hence,Esynch = l∗(erx+edec)+ea∗t. The watching concept
is illustrated with an example in Figure 3. In the figure, there
is one source sensor node, A, and other nodes B, C, and D
are located along the path to the sink. Every node watches
its downstream node, i.e., B watches A (B ⋖ A); C watches
B (C ⋖ B); D watches C (D ⋖ C). All the nodes have the
initial virtual energy of 2000mJ and as packets are inserted
into the network from the source node (A) over time, nodes
decrement their virtual energy values. For instance, as shown
in Figure 3, node A starts with the value of 2000mJ as the first
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Fig. 3. An illustration of the watching concept with forwarding.

key to encode the packet (key generation based on the virtual
energies is explained in the crypto module). Node A sends the
first packet and decrements its virtual energy to 1998mJ. After
node B receives this first packet, it uses the virtual perceived
energy value (Ep=2000mJ) as the key to decode the packet,
and updates itsEp (1998mJ) after sending the packet. When
the packet travels up to the sink, the virtual energy becomes
a shared dynamic cryptic credentialamong the nodes.

B. Crypto Module

Due to the resource constraints of WSNs, traditional digi-
tal signatures or encryption mechanisms requiring expensive
cryptography is not viable. The scheme must be simple, yet
effective. Thus, in this subsection we introduce a simple
encoding operation similar to that used in [7]. The encoding
operation is essentially the process of permutation of the bits
in the packet according to the dynamically created permutation
code via the RC4 encryption mechanism. The key to RC4 is
created by the previous module (virtual energy-based keying
module). The purpose of the crypto module is to provide
simple confidentiality of the packet header and payload while
ensuring the authenticity and integrity of sensed data with-
out incurring transmission overhead of traditional schemes.
However, since the key generation and handling process is
done in another module, VEBEK’s flexible architecture allows
for adoption of stronger encryption mechanisms in lieu of
encoding.

The packets in VEBEK consists of the ID (i-bits), type (t-
bits) (assuming each node has a type identifier), and data (d-
bits) fields. Each node sends these to its next hop. However,
the sensors’ ID, type, and the sensed data are transmitted in a
pseudo random fashion according to the result of RC4. More
specifically, the RC4 encryption algorithm takes the key and
the packet fields (byte-by-byte) as inputs and produces the
result as a permutation code as depicted in Figure 4. The con-
catenation of each 8-bit output becomes the resultant permuta-
tion code. As mentioned earlier, the key to the RC4 mechanism
is taken from the core virtual energy-based keying module,
which is responsible for generating the dynamic key according
to the residual virtual energy level. The resultant permutation

Fig. 4. An illustration of the use of RC4 encryption mechanism in VEBEK.

TABLE II
EXAMPLE ENCODING OPERATIONS

Order of fields in pkt 1’s complement
ID, Type, Data 00 Yes 1
ID, Data, Type 01 No 0
Data, ID, Type 10 Circular Shift
Data, Type, ID 11 Yes 1
Order of bits in field No 0
Little Endian 0 1-bit interleave
Big Endian 1 Yes 1
Shift Direction No 0
Left 1 Shift Amount
Right 0

code is used to encode the〈ID|type|data〉 message. Then, an
additional copy of the ID is also transmitted in the clear along
with the encoded message. The format of the final packet to
be transmitted becomesPacket = [ID, {ID, type, data}k]
where{x}k constitutes encodingx with key k. Thus, instead
of the traditional approach of sending the hash value (e.g.,
message digests, message authentication codes) along with the
information to be sent, we use the result of the permutation
code value locally. When the next node along the path to the
sink receives the packet, it generates the local permutation
code to decode the packet.

Another significant step in the crypto module involves how
the permutation code dictates the details of the encoding
and decoding operations over the fields of the packet when
generated by a source sensor or received by a forwarder sensor.

Specifically, the permutation codeP can be mapped to a
set of actions to be taken on the data stream combination. As
an example, the actions and their corresponding bit values can
include simple operations such as shift, interleaving, taking the
1’s complement, etc. Other example operations can be seen in
Table II.

For example, if a node computed the following permutation
codeP = {1100100101}, the string in Figure 5.a becomes
the string in Figure 5.d before it is transmitted. The receiver
will perform the same operations (since the inputs to RC4
are stored and updated on each sensor) to accurately decode
the packet. To ensure correctness, the receiver compares the
plaintext ID with the decoded ID. Moreover, although it is
theoretically possible (1 in2i+t+d) for a hacker to accurately
inject data, it becomes increasingly unlikely as the packet
grows.

The benefits of this simple encoding scheme are: 1) since
there is no hash code or message digest to transmit, the
packet size does not grow, avoiding bandwidth overhead on
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Fig. 5. Illustration of a sample encoding operation.

an already resource constrained network, thus increasing the
network lifetime; 2) the technique is simple, thus ideal for
devices with limited resources (e.g., PDAs); and 3) the input
to the RC4 encryption mechanism, namely the key, changes
dynamically without sending control messages to rekey.

C. Forwarding Module

The final module in the VEBEK communication architec-
ture is the forwarding module. The forwarding module is
responsible for the sending of packets (reports) initiated at
the current node (source node) or received packets from other
sensors (forwarding nodes) along the path to the sink. The
reports traverse the network through forwarding nodes and
finally reach the terminating node, the sink. The operations of
the forwarding module are explained in this subsection.

1) Source Node Algorithm:When an event is detected by a
source node the next step is for the report to be secured. The
source node uses the local virtual energy value and an IV (or
previous key value if not the first transmission) to construct
the next key. As discussed earlier, this dynamic key generation
process is primarily handled by the VEBEK module. The
source sensor fetches the current value of the virtual energy
from the VEBEK module. Then, the key is used as input
into the RC4 algorithm inside the crypto module to create a
permutation code for encoding the〈ID|type|data〉 message.
The encoded message and the cleartext ID of the originating
node are transmitted to the next hop (forwarding node or sink)
using the following format:[ID, {ID, type, data}Pc], where
{x}Pc constitutes encodingx with permutation codePc. The
local virtual energy value is updated and stored for use with
the transmission of the next report.

2) Forwarder Node Algorithm:Once the forwarding node
receives the packet it will first check its watch-list to determine
if the packet came from a node it is watching. If the node is
not being watched by the current node, the packet is forwarded
without modification or authentication. Although this node
performed actions on the packet (received and forwarded the
packet), its local virtual perceived energy value is not updated.
This is done to maintain synchronization with nodes watching
it further up the route. If the node is being watched by
the current node, the forwarding node checks the associated
current virtual energy record (Algorithm 2) stored for the

sending node and extracts the energy value to derive the key.
It then authenticates the message by decoding the message
and comparing the plaintext node ID with the encoded node
ID. If the packet is authentic, an updated virtual energy value
is stored in the record associated with the sending node. If
the packet is not authentic it is discarded. Again, the virtual
energy value associated with the current sending node is only
updated if this node has performed encoding on the packet.

Algorithm 2 Forwarding Node Algorithm with Communica-
tion Error Handling

1: Forwarder(currentNode,WatchedNode,UpstreamNode)
2: begin
3: i← currentNode; enc← 0;WLi ←WatchList
4: k ←WatchedNode; src← 0; j ← 0
5: Erxi

, 〈IDclr, {msg}K〉 ← ReceivePacket()
6: if IDclr ∈ WLi then
7: while (keyFound = 0)and(j <= thresHold) do
8: Ek

pi
← FetchV irtualEnergy(i, IDclr, enc, src)

9: K ← ComputeDynamicKey(Ek
pi
, IDclr)

10: Pc← RC4(K, IDclr)
11: Edeci ,MsgID ← decode(Pc, {msg}K)
12: if IDclr = MsgID then
13: keyFound← true
14: else
15: j ++
16: Ek

pi
← Ek

pi
− Etxi

−Eenci − Erxi
− Edeci − 2 ∗ Eai

17: end if
18: end while
19: if keyFound = true then
20: if j > 1 then
21: reEncode← true
22: else
23: if Ebi > 0 then
24: reEncode← true
25: else
26: reEncode← false
27: end if
28: end if
29: if reEncode = true then
30: enc← 1
31: Ebi ← FetchV irtualEnergy(i, IDclr, enc, src)
32: K ← ComputeDynamicKey(Ebi , IDclr)
33: Pc← RC4(K, IDclr)
34: Eenci , {msg}Pc ← encode(Pc,msg)
35: packet← 〈IDclr, {msg}Pc〉
36: Etxi

← ForwardPacket()
37: Ebi ← Ebi − Etxi

− Eenci −Erxi
−Edeci − 2 ∗Eai

38: else
39: ForwardPacket() //Without any modification
40: end if
41: else
42: DropPacket() //Packet not valid
43: end if
44: else
45: ForwardPacket() //Without any modification
46: end if
47: end

3) Addressing Communication Errors via Virtual Bridge
Energy: In VEBEK, to authenticate a packet, a node must keep
track of the virtual energy of the sending node to derive the key
needed for decoding. Ideally, once the authenticating node has
the initial virtual energy value of the sending node, the value
can be updated by decrementing the cost associated with the
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actions performed by the sending node using the cost equations
defined in the previous sub-sections on every successful packet
reception. However, communication errors may cause some
of the packets to be lost or dropped. Some errors may be
due to the deployment region (e.g., underwater shadow zones)
while operating on unreliable underlying protocols (e.g., MAC
protocol). For instance, ACK or data packets can be lost
and the sender may not be able to determine which one
actually was lost. Moroever, malicious packets inserted by
attackers who impersonate legitimate sensors will be dropped
intentionally by other legitimate sensors to filter the bad
data out of the network. In such communication errors or
intentional packet drop cases, the virtual energy value used
to encode the next data packet at the sending node may differ
from the virtual energy value that is stored for the sending
node at its corresponding watching node. Specifically, the node
that should have received the dropped packet and the nodes
above that node on the path to the sink lose synchronization
with the nodes below (because the upper portion never sees the
lost packet and does not know to decrement the virtual energy
associated with servicing the lost transmission). If another
packet were to be forwarded by the current watching node
using its current virtual energy, the upstream node(s) that
watch this particular node would discard the packet. Thus,
this situation needs to be resolved for proper functioning of
the VEBEK framework.

To resolve potential loss of packets due to possible com-
munication errors in the network, all the nodes are configured
to store an additional virtual energy value, which we refer to
as theVirtual Bridge Energy,Ebi , value to allow resynchro-
nization (bridging) of the network at the next watching sensor
node that determines that packets were lost.

Definition 3: Given a node,i, bridging is defined as the
process of encoding the incoming packet coming from any
sensor node inWLi for the upstream sensor node,j, with the
key generated using the local copy ofEbi .
That is, as subsequent packets generated from the node of
interest pass through the next watching node, the next watch-
ing node will decode the packet with the virtual perceived
energy key of the originating node and re-encode the packet
with the virtual bridge energy key, thus the network will be
kept synchronized. It is important to note that once this value
is activated for a watched node, it will be always used for
packets coming from that node and used even if an error does
not occur for the later transmissions of the same watched node.
The watching node always updates and uses this parameter to
keep the network bridged.

Another pertinent point is the determination of packet loss
by the first upstream watching node who will bridge the
network. The VEBEK framework is designed to avoid extra
messages and not increase the packet size to determine packet
loss in the network. Thus, the next watching node tries to
find the correct value of the virtual perceived energy for
the key within a window of virtual energies. For this, a
sensor is configured with a certainVirtualKeySearchThreshold
value. That is, the watching node decrements the predefined
virtual energy value from the current perceived energy at most
virtualKeySearchThreshold times. When the node extracts the

key successfully, it records the newest perceived energy value
and associates it with the sender node (lines 7−18 in Algo-
rithm 2). This approach may also be helpful in severe packet
loss cases (i.e., bursty errors) by just properly configuring
the virtualKeySearchThreshold value. However, if the watcher
node exhausts all of the virtual energies within the threshold,
it then classifies the packet as malicious.

The combined use of virtual perceived and bridge energies
assure the continued synchronization of the network as whole.
The forwarding node algorithm including the handling of
communication errors is shown in Algorithm 2.

IV. OPERATIONAL MODES OFVEBEK

The VEBEK protocol provides three security services: Au-
thentication, integrity, and non-repudiation. The fundamental
notion behind providing these services is the watching mech-
anism described before. The watching mechanism requires
nodes to store one or more records (i.e., current virtual energy
level, virtual bridge energy values, and Node-Id) to be able
to compute the dynamic keys used by the source sensor
nodes, to decode packets, and to catch erroneous packets
either due to communication problems or potential attacks.
However, there are costs (communication, computation, and
storage) associated with providing these services. In reality,
applications may have different security requirements. For
instance, the security need of a military WSN application (e.g.,
surveiling a portion of a combat zone) may be higher than
that of a civilian application (e.g., collecting temperature data
from a national park). The VEBEK framework also considers
this need for flexibility and thus, supports two operational
modes:VEBEK-I and VEBEK-II. The operational mode of
VEBEK determines the number of nodes a particular sensor
node must watch. Depending on the vigilance required inside
the network, either of the operational modes can be configured
for WSN applications. The details of both operational modes
are given below. The performance evaluation of both modes
is given in Section V.

A. VEBEK-I

In the VEBEK-I operational mode, all nodes watch their
neighbors; whenever a packet is received from a neighbor
sensor node, it is decoded and its authenticity and integrity
are verified. Only legitimate packets are forwarded toward the
sink. In this mode, we assume there exists a short window
of time at initial deployment that an adversary is not able
to compromise the network, because it takes time for an
attacker to capture a node or get keys. During this period,
route initialization information may be used by each node to
decide which node to watch and a recordr is stored for each
of its 1-hop neighbors in its watch-list. To obtain a neighbor’s
initial energy value, a network-wise master key can be used to
transmit this value during this period similar to the shared-key
discovery phase of other dynamic key management schemes.
Alternatively, sensors can be pre-loaded with the initial energy
value.

When an event occurs and a report is generated, it is
encoded as a function of a dynamic key based on the virtual
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energy of the originating node, and transmitted. When the
packet arrives at the next-hop node, the forwarding node
extracts the key of the sending node (this could be the origi-
nating node or another forwarding node) from its record. (The
virtual perceived energy value associated with the sending
node and decodes the packet). After the packet is decoded
successfully, the plaintext ID is compared with the decoded
ID. In this process, if the forwarding node is not able to
extract the key successfully, it will decrement the predefined
virtual energy value from the current perceived energy (line
16 in Algorithm 2) and tries another key before classifying the
packet as malicious (because packet drops may have occurred
due to communication errors). This process is repeated several
times; however, the total number of trials that are needed to
classify a packet as malicious is actually governed by the value
of virtualKeySearchThreshold. If the packet is authentic, and
this hop is not the final hop, the packet is re-encoded by the
forwarding node with its own key derived from its current
virtual bridge energy level. If the packet is illegitimate, the
packet is discarded. This process continues until the packet
reaches the sink. Accordingly, illegitimate traffic is filtered
before it enters the network.

Re-encoding at every hop refreshes the strength of
the encoding. Recall that the general packet structure is
[ID, {ID, type, data}k]. To accommodate this scheme, the
ID will always be the ID of the current node and the key
is derived from the current node’s local virtual bridge energy
value. If the location of the originating node that generated the
report is desired, the packet structure can be modified to retain
the ID of the originating node and the ID of the forwarding
node.

VEBEK-I reduces the transmission overhead as it will be
able to catch malicious packets in the next hop, but increases
processing overhead because of the decode/encode that occurs
at each hop.

B. VEBEK-II

In the VEBEK-II operational mode, nodes in the network
are configured to only watch some of the nodes in the network.
Each node randomly picksr nodes to monitor and stores the
corresponding state before deployment. As a packet leaves the
source node (originating node or forwarding node) it passes
through node(s) that watch it probabilistically. Thus, VEBEK-
II is a statistical filtering approach like SEF [12] and DEF [13].
If the current node is not watching the node that generated the
packet, the packet is forwarded. If the node that generated the
packet is being watched by the current node, the packet is
decoded and the plaintext ID is compared with the decoded
ID. Similar to VEBEK-I, if the watcher-forwarder node cannot
find the key successfully, it will try as many keys as the value
of virtualKeySearchThreshold before actually classifying the
packet as malicious. If the packet is authentic, and this hop is
not the final destination, the original packet is forwarded unless
the node is currently bridging the network. In the bridging
case, the original packet is re-encoded with the virtual bridge
energy and forwarded. Since this node is bridging the network,
both virtual and perceived energy values are decremented

accordingly. If the packet is illegitimate, which is classified as
such after exhausting all the virtual perceived energy values
within the virtualKeySearchThreshold window, the packet is
discarded. This process continues until the packet reaches the
sink.

This operational mode has more transmission overhead
because packets from a malicious node may or may not be
caught by a watcher node and they may reach the sink (where
it is detected). However, in contrast to the VEBEK-I mode, it
reduces the processing overhead (because less re-encoding is
performed and decoding is not performed at every hop). The
trade-off is that an illegitimate packet may traverse several
hops before being dropped. The effectiveness of this scheme
depends primarily on the valuer, the number of nodes that
each node watches. Note that in this scheme, re-encoding is
not done at forwarding nodes unless they are bridging the
network.

Fig. 6. Simulation topology with GTSNetS.

V. PERFORMANCEANALYSIS

In this section we evaluate the effectiveness of the VEBEK
framework via both simulations and analysis.

A. Assumptions

Due to the broadcast nature of the wireless medium used
in sensor networks, attackers may try to eavesdrop, intercept,
or inject false messages. In this paper we mainly consider the
false injection and eavesdropping of messages from an outside
malicious node; hence, similar to [12], insider attacks are
outside the scope of this paper. This attacker is thought to have
the correct frequency, protocol, and possibly a spoofed valid
node ID. Throughout this work, the following assumptions are
also made:

• Directed Diffusion [14] routing protocol is used, but
others such as [15] can also be used. According to
specifics of Directed Diffusion, after the sink asks for data
via interest messages, a routing path is established from
the sources in the event region to the sink. We assume
that the path is fixed during the delivery of the data and
the route setup is secure.

• The routing algorithm is deployed on an unreliable MAC.
The network may experience ACK or data packet drops.
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• The sensor network is densely populated such that mul-
tiple sensors observe and generate reports for the same
event.

• Sensors are assumed to have the same communication
ranges and may have different initial battery supplies.

B. Simulation Parameters

We use the Georgia Tech Sensor Network Simulator (GT-
SNetS) [16], which is an event-based object-oriented sensor
network simulator with C++, as our simulation platform to
perform the analysis of the VEBEK communication frame-
work. The topology used for the simulation is shown in Figure
6, while the parameters used in the simulation are summarized
in Tables III and IV. Nodes were distributed randomly in
the deployment region and on average, the distance between
the source nodes and the sink was around 25 35 hops. The
virtualKeySearchThreshold value was 15 [17]. The energy
costs for different operations in the table are computed based
on the values given in [4]. However, the costs for encoding and
decoding operations are computed based on the the reported
values of the implementation of RC4 [18] on real sensor
devices.

TABLE III
GENERAL SIMULATION PARAMETERS

# of Nodes 500 SensSize 32 bytes
Area 1000x1000 m RecvInterval 50s
# of Watched (0..60) SensRate 30s
Link Rate 250Kbps SimTime 3000s
Range 75 m #of Mal Node (0..10)

TABLE IV
ENERGY RELATED PARAMETERS

Erx 85.1µJ Edec 15.5µJ
Etx 78µJ Eenc 15.5µJ
Esens 36µJ Voltage 3V
Esa 18.6µJ

C. Attack Resilience

In this sub-section, the performance of VEBEK is analyzed
when there are malicious source nodes in the data collection
field who insert bad packets into the network. Specifically, the
analytical basis of the VEBEK framework’s resilience against
malicious activities is formulated. Then, this theoretical basis
is verified with the simulation results. We compare VEBEK-I
and VEBEK-II considering the drop probability vs. number of
hops. We also take a closer look at VEBEK-II and how it is
affected by the parameter,r (the number of records).

In VEBEK-I and VEBEK-II, in order for an attacker to be
able to successfully inject a false packet, an attacker must forge
the packet encoding (which is a result of dynamically created
permutation code via RC4). Given that the complexity of the
packet is2l wherel is the sum of the ID, TYPE, and DATA

fields in the packet, the probability of an attacker correctly
forging the packet is:

Pforge =
1

2packetsize
=

1

2l
(8)

Accordingly, the probability of the hacker incorrectly forging
the packet and therefore the packet being dropped (pdrop−I)
is:

Pdrop−I = 1− Pforge (9)

Since VEBEK-I authenticates at every hop, forged packets
will always be dropped at the first hop with a probability of
Pdrop−I .

On the other hand, VEBEK-II statistically drops packets
along the route. Thus, the drop probability for VEBEK-II
(Pdrop−II) is a function of the effectiveness of the watching
nodes as well as the ability for a hacker to correctly guess
the encoded packet structure. Accordingly, the probability
of detecting and dropping a false packet at one hop when
randomly choosingr records (nodes to watch) is:

Pdrop−II =
r

N
∗ (1 − Pforge) (10)

Thus, the probability to detect and drop the packet when
choosingr records afterh hops is:

P
r,h
drop−II = 1− (1− pdrop−II)

h (11)

Moreover, even if one false packet successfully makes it to
the sink, we assume that the sink has enough resources to
determine which data to process and accept.

Figure 7 shows both the theoretical and simulation results
for VEBEK-II based on the above equations for a varying
number of watched nodes,r, in the WSN. Note that VEBEK-
I is not shown in this figure because it eliminates malicious
data immediately. The x-axis represents the number of hops
a malicious packet travels before it has been detected and
taken out of the network. As can be seen from the figure,
VEBEK-II is able to eliminate malicious packets from the
WSN within 15 hops with 0.5 probability when nodes watch
25 randomly chosen nodes (r value). However, if more storage
is available on the sensors, then VEBEK-II can detect and
remove malicious packets within 15 hops with 0.90 probability
whenr is 60. A similar trend is observed in the same figure
with the simulation results.

On the other hand, Figure 8 presents the comparison of
VEBEK-I (VI in the figure) and VEBEK-II (VII in the figure)
via simulation in terms of their filtering efficiency. The x-axis
represents the number of watched nodes (r) that each node is
configured to watch in VEBEK-II and the y-axis shows the
percent of in-network malicious packet dropped with varying
number of malicious nodes in the simulation. As expected, we
see that VEBEK-I is always able to filter malicious packets
from the network with its 100% filtering efficiency. This is
mainly due to the fact that malicious packets are immediately
taken out from the network at the next hop. However, the fil-
tering efficiency of VEBEK-II is closely related to the number
of nodes (r) that each node watches. The more nodes watched
by other nodes, the more efficient VEBEK-II is with filtering
malicious data. Additionally, as seen whenr is equal to 40,
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it is possible to achieve almost 90% filtering efficiency. This
particular observation with VEBEK-II is significant because
for some WSN applications, energy can be saved by properly
configuring ther parameter. Finally, with respect to Figure 8,
we observe that the VEBEK framework is independent of the
number of malicious nodes as the framework still filters the
malicious data from the network successfully.

D. Energy Consumption of VEBEK-I and VEBEK-II

In this sub-section we look at the associated costs to transmit
valid data in VEBEK-I and VEBEK-II.

In both operational modes, there is a single cost (ESo) to
stay-alive, sense the event, encode the packet, and transmit the
packet (Esa, Esens, Eenc, Etx) at the source sensor. Thus,

ESo = Esens + Eenc + Etx + Esa (12)

Additionally, there is a recurring forwarding cost (EFW ) to
marshal the packet through the network depending on the
number of hops. In VEBEK-I, this cost is

EFW = Erx + Edec + Eenc + Etx + Esa (13)

for all of the intermediate nodes since all of the nodes perform
the same operations. Hence, the average cost to transmit a
packet in VEBEK-I usingE[ηh] from (2) is:

EFWI
= ESo + (E[ηh] ∗ EFW ) (14)

On the other hand, in VEBEK-II the cost ofEFWII
consists

of EFWw
andEFWnw

for variable fractions of the forwarding
nodes depending on the number of nodes each node chose to
watch, whereEFWw

= EFW andEFWnw
= Erx+Etx+Esa.

Hence, the average cost to transmit a packet using VEBEK-II
is:

EFWII
= ESo+(E[ηhw

]∗EFWw
)+(E[ηhnw

]∗EFWnw
) (15)

whereE[ηhw
] andE[ηhnw

] represent the expected number of
nodes along the path who are watchers and non-watcher nodes,
respectively. The values for these expectations can be com-
puted given the total expected number of hops withE[ηh] from
(2) whereE[ηh] = E[ηhw

] + E[ηhnw
] for i = 1, 2, 3, .., ηh.

Let Xi = 1 if the ith sensor is a watcher and letXi =
0 otherwise for a given path to the sink with probabilities

P{p = 1} = r
N

, P{q = 0} = N−r
N

, and N sensors. Then,
Xi ∼ Bernoulli(p) i.i.d. random variables andηhw

= X1 +
...+Xηh

.

E[ηhw
] = E[

ηh∑

i=1

Xi] = E[E[

ηh∑

i=1

Xi|ηh]] (16)

Hence, by the independence ofXi andηh;

E[ηhw
] = E[ηh] ∗E[Xi] =

r

N
∗ E[ηh] (17)

With a similar reasoning, an expression for the expected
number of non-watchers,E[ηhnw

], can be written as follows.

E[ηhnw
] = E[ηh] ∗ E[Xi] =

N − r

N
∗ E[ηh] (18)

Implementing these costs inside the GTSNetS simulator, we
have evaluated the energy performance of the scheme both
for VEBEK-I and VEBEK-II and plotted the results. In all
the figures, the x-axis represents the number of malicious
nodes while the y-axis is the energy consumption. Different
values for the number of watched nodes (r) were analyzed
for VEBEK-II. Furthermore, two attack scenarios were con-
sidered: Attack-Scenario-1 and Attack-Scenario-2. VEBEK-I
and VEBEK-II are abbreviated as VI and VII in the figures.

In Attack-Scenario-1, less powerful malicious nodes are
assumed. The total number of healthy source nodes that collect
the event information and send it toward the sink is assumed to
be fixed, whereas the number of malicious nodes are increased
over time. Lettingi be the number of healthy source nodes
andj be the number of malicious nodes, in Attack-Scenario-
1, j ≤ i, wherei = n and n > 0. Figures 9−11 show the
results for Attack-Scenario-1. As seen from the computation
costs (i.e.,Eenc, Edec) (Figure 9), VEBEK-II’s consumption
is less than that of VEBEK-I. The primary reason for this
behavior stems from decoding and re-encoding of packets at
every hop in the network for VEBEK-I. Also, as the number
of watched nodes (r) increases, VEBEK-II’s computation cost
increases because more packets are processed for the filtering
operation. On the other hand, the more malicious nodes in
the system, the more resources are consumed to filter the
increased number of malicious packets in the network. As for
the transmission costs (i.e.,Etx, Erx) in Figure 10, VEBEK-I
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Fig. 9. Computation costs (Attack-Scenario-1).
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0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

E
ne

rg
y 

(m
J)

# of Malicious Nodes

Computation Energy of VEBEK−I vs. VEBEK−II with Attack Scenario−2

 

 

VI
VII−r−1
VII−r−10
VII−r−20
VII−r−30
VII−r−40
VII−r−60

Fig. 12. Computation costs (Attack-Scenario-2).
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Fig. 13. Transmissions costs (Attack-Scenario-2).
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Fig. 14. Total energy costs (Attack-Scenario-2).

is better as the nodes are able to catch and drop malicious
packets and do not let malicious packets traverse the network.
As r decreases, fewer nodes are watched by the sensors.
Thus, the transmission cost increases in the network because
more traffic traverses the network as a result of less filtering
capability with smallerr values. Furthermore, as the number
of malicious nodes increases in the network, the transmission
cost increases due to more malicious traffic. Finally, analyzing
the results for the total energy consumption, we see that the
total energy consumption in the network exhibits a similar
behavior as transmission costs because the overall energy
consumption is greatly dominated by the transmission costs.
Moreover, we observe that the total energy consumption for
VEBEK-II is smaller than VEBEK-I up to a certain number
of malicious nodes (1 and 2) for certain values ofr (all
watching values at 1 malicious node; and watching values of
30, 40, and 60 at 2 malicious nodes). The implication of this
result is interesting. If the deployment region is a relatively
safe environment (< 2 malicious nodes in our scenario), a
similar filtering efficiency of VEBEK-I can be achieved using
VEBEK-II (100% for VEBEK-I vs. 99% for VEBEK-II with
r = 60) (Figure 8) if more storage is available on the nodes.
This can be accomplished while consuming less energy than
VEBEK-I (3400mJ for VEBEK-I vs. 2800 mJ for VEBEK-II).

In Attack-Scenario-2, more powerful malicious nodes are
assumed. For instance, they can jam the signal and not allow
healthy nodes to transmit. Over time, more powerful nodes
are assumed to replace the number of healthy source nodes.

Hence,j = 0, 1, 2, .., n andi = n, n−1, n−2, .., 0 where again
n > 0. Figures 12−14 present the results for Attack-Scenario-
2. In all the figures, it is possible to observe the same patterns
as Attack-Scenario-1. The only difference is the downward
slope with some of the plots. This is attributed to the fact that
the ratio of the healthy traffic diminishes in this attack scenario
as the number of bad packets increases due to the number of
malicious nodes in the network.

So, if a more secure application is desired or if the WSN ap-
plication is deployed in an hostile environment, then VEBEK-I
is recommended because VEBEK-I provides security services
at every hop. VEBEK-I also watches fewer nodes in com-
parison to VEBEK-II. Thus, the lower storage requirement
(i.e., fewer watched nodes) and providing security at every
hop make VEBEK-I well suitable for military WSN applica-
tions where immediate reaction to enemy units is necessary.
However, the downside of the VEBEK-I operational mode is
its high processing costs. On the other hand, if the deploy-
ment region is expected to be a relatively safe environment,
which may be true for some civilian WSN applications, then
VEBEK-II can be utilized. But, as discussed above, to provide
a comparable level of vigilance to the network, this operational
mode uses much more storage than VEBEK-I.

E. Comparison of VEBEK-II with Other Statistical Schemes

In this sub-section, we evaluate the energy performance of
VEBEK-II with other ”en-route dynamic filtering” works in
the literature. We focus on statistical schemes because they
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(a) DEF. (b) SEF. (c) STEF.

Fig. 15. Illustrations of DEF, SEF, and STEF.

have received a lot of attention in recent years. Specifically,
we compare the expected energy costs of DEF [13], SEF [12],
and STEF [19]4 with that of VEBEK-II because VEBEK-II is
the statistical mode of the VEBEK framework. First, we briefly
summarize each protocol and discuss their drawbacks. Then,
the comparison results are presented. An illustration of each
protocol is given in Figure 15.

In the Dynamic En-route Filtering scheme (DEF) by Yu
and Guan [13], a legitimate report is endorsed by multiple
sensing nodes using their own authentication keys. Before
deployment, each node is preloaded with a seed authentication
key andl+1 secret keys randomly chosen from a global key
pool. Before sending reports, the cluster head disseminates
the authentication keys to forwarding nodes encrypted with
secret keys that will be used for endorsing. The forwarding
nodes stores the keys if they can decrypt them successfully.
Later, cluster heads send authentication keys to validate the
reports. The DEF scheme involves the usage of authentication
keys and secret keys to disseminate the authentication keys;
hence, it uses many keys and is complicated for resource-
limited sensors.

Ye et al. proposed statistical en-route filtering (SEF) [12].
In SEF, each sensing report is validated by multiple keyed
message authentication codes (MACs). Specifically, each node
is equipped with some number of keys that are drawn ran-
domly from the global key pool. First, a center of stimulus is
selected among the source sensor nodes in the event region.
Then, once a report is generated by a source node, a MAC
is appended to the report. Next, another upstream node that
has the same key as the source can verify the validity of the
MAC and filters the packet if the MAC is invalid. However,
the downside of SEF is that the nodes must store keys and
packets are enlarged by MACs. Although the authors suggest
the use of bloom-filters to decrease the MAC overhead, SEF
is a static key-based scheme and it inherits all the downsides
of static key management schemes.

The scheme, Secure Ticket-Based En-route Filtering (STEF)
[19], by Krauss et al. proposes using a ticket concept, where
tickets are issued by the sink and packets are only forwarded
if they contain a valid ticket. If a packet does not contain

4Although STEF is not a statistical approach, we included in our compar-
ison because it is a relevant en-route filtering study.
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Fig. 16. Comparison of VEBEK, DEF[13], SEF[12], and STEF[19].

a valid ticket, it is immediately filtered out. STEF is similar
in nature to SEF and DEF. The packets contain a MAC and
cluster heads share keys with their immediate source sensor
nodes in their vicinity and with the sink. The downside of
STEF is its one way communication in the downstream for
the ticket traversal to the cluster head.

Since DEF and SEF are probabilistic schemes, a comparison
of each scheme with VEBEK-II in terms of their energy con-
sumption is presented in Figure 16. The results are generated
for one round of communication from a source node to the
sink, which is assumed to be locatedn hops away from the
source node. The x-axis represents the hop count and is varied,
while the y-axis is the energy. To simplify the comparisons,
we assumed that all the nodes in DEF, SEF and VEBEK-II
would have the necessary keying material with 0.7 probability
to do the desired security features imposed by the specific
protocol in a benign environment (no malicious nodes). We
also assumed that the protocols that use hashing and encryp-
tion mechanisms would use MD5 and RC4, respectively. The
real sensor implementation values for these crypto mechanisms
are taken from [18] and [20]. Another necessary assumption
was that all protocols would work in perfect communication
cases without packet loss because only the VEBEK framework
has been designed with handling communication error cases
and it would not be meaningful to compare VEBEK with
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Fig. 17. Synchronization ratio of nodes along the path to the sink.

others when others were not designed to handle errors. As
can be seen, VEBEK-II is better than all the schemes, ex-
hibiting a performance improvement of 60%−100% in energy
consumption than the closest scheme, SEF. We note that all
other schemes provide a nice framework for filtering malicious
data en-route; however, the other schemes exchange many
messages, involve the use of many keys, and do not have any
mechanism to cope with packet loss.

Moreover, we analyze how VEBEK improves the synchro-
nization problems that may occur due to communication errors
in our previous work, DEEF [7]. Since DEEF is based on
generating communication keys with real battery levels, packet
drops may cause the nodes to easily loose synchronization
with other nodes along the path to the sink. To analyze
the synchronization problem, we definesynchronization ratio
as a metric to measure the performance of the VEBEK
framework during packet drops. Specifically, we denote the
synchronization ratio,ϕ, as follows:

ϕ =

ηhw∑

i=1

γi

γi + εi
(19)

where i is the node,γ is the number of forwarded-watched
packets,ε is the number of dropped-watched packets, and
ηhw

is the number of watcher nodes between the source and
the sink. Figure 17 presents the simulation results of the
synchronization ratio with respect to DEEF and VEBEK. As
can be seen, VEBEK outperforms DEEF and it is able to keep
its synchronization even in dire communication scenarios. The
x-axis is the the percent of the packets that are dropped due
to communication errors.

VI. RELATED WORK

En-route dynamic filtering of malicious packets has been the
focus of several studies, including dynamic en-route filtering
(DEF) by Yu and Guan [13], statistical en-route filtering (SEF),
[12], and Secure Ticket-Based En-route Filtering (STEF) [19].
As the details are given in the performance evaluation section
(Section V) where they were compared with the VEBEK
framework, the reader is referred to that section for further
details as not to replicate the same information here. Moreover,
Ma’s work [21] applies the same filtering concept at the sink
and utilizes packets with multiple MACs appendedand. A
work [22] proposed by Hyun and Kim uses relative location

information to make the compromised data meaningless and to
protect the data without cryptographic methods. In [23], using
static pairwise keys and two MACs appended to the sensor
reports, ”an interleaved hop-by-hop authentication scheme for
filtering of injected false data” was proposed by Zhu et al
to address both the insider and outsider threats. However, the
common downside of all these schemes is that they are compli-
cated for resource-constrained sensors and they either utilize
many keys or they transmit many messages in the network,
which increases the energy consumption of WSNs. Also, these
studies have not been designed to handle dire communication
scenarios unlike VEBEK. Another significant observation with
all of these works is that a realistic energy analysis of the
protocols was not presented. Lastly, the concept of dynamic
energy-based encoding and filtering was originally introduced
by the DEEF [7] framework. Essentially, VEBEK has been
largely inspired by DEEF. However, VEBEK improves DEEF
in several ways. First, VEBEK utilizes virtual energy in place
of actual battery levels to create dynamic keys. VEBEK’s
approach is more reasonable because in real life, battery levels
may fluctuate and the differences in battery levels across nodes
may spur synchronization problems, which can cause packet
drops. Second, VEBEK integrates handling of communication
errors into its logic, which is missing in DEEF. Lastly, VEBEK
is implemented based on a realistic WSN routing protocol, i.e.,
Directed Diffusion [14], while DEEF articulates the topic only
theoretically.

Another crucial idea of this paper is the notion of sharing
a dynamic cryptic credential (i.e., virtual energy) among the
sensors. A similar approach was suggested inside the SPINS
study [24] via the SNEP protocol. In particular, nodes share
a secret counter when generating keys and it is updated for
every new key. However, the SNEP protocol does not consider
dropped packets in the network due to communication errors.
Although another study, Minisec [25], recognizes this issue,
the solution suggested by the study still increases the packet
size by including some parts of a counter value into the packet
structure. Finally, one useful pertinent work [6] surveys cryp-
tographic primitives and implementations for sensor nodes.

VII. C ONCLUSION AND FUTURE WORK

Communication is very costly for wireless sensor networks
(WSN)s and for certain WSN applications. Independent of the
goal of saving energy, it may be very important to minimize
the exchange of messages (e.g., military scenarios). To address
these concerns, we presented a secure communication frame-
work for WSNs calledVirtual Energy-BasedEncryption and
Keying (VEBEK).

In comparison with other key management schemes, VE-
BEK has the following benefits: (1) it does not exchange
control messages for key renewals and is therefore able to
save more energy and is less chatty; (2) it uses one key per
message so successive packets of the stream use different keys
- making VEBEK more resilient to certain attacks (e.g., replay
attacks, brute-force attacks, masquerade attacks); and (3) it
unbundles key generation from security services, providing a
flexible modular architecture that allows for an easy adoption
of different key-based encryption or hashing schemes.
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We have evaluated VEBEK’s feasibility and performance
through both theoretical analysis and simulations. Our results
show that different operational modes of VEBEK (I and II) can
be configured to provide optimal performance in a variety of
network configurations depending largely on the application of
the sensor network. We also compared the energy performance
of our framework with other en-route malicious data filtering
schemes. Our results show that VEBEK performs better (in the
worst case between 60%−100% improvement in energy sav-
ings) than others while providing support for communication
error handling, which was not the focus of earlier studies. Our
future work will address insider threats and dynamic paths.
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